Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Wang, 2015, Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones, Nano Lett., 15, 6182, 10.1021/acs.nanolett.5b02512
Zhang, 2015, Penta-graphene: a new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A., 112, 2372, 10.1073/pnas.1416591112
Mortazavi, 2016, Amorphized graphene: a stiff material with low thermal conductivity, Carbon, 103C, 318, 10.1016/j.carbon.2016.03.007
Kotakoski, 2015, Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene, Nano Lett., 15, 5944, 10.1021/acs.nanolett.5b02063
Perim, 2014, Inorganic graphenylene: a porous two-dimensional material with tunable band gap, J. Phys. Chem. C, 118, 23670, 10.1021/jp502119y
Wang, 2013, Prediction of a new two-dimensional metallic carbon allotrope, Phys. Chem. Chem. Phys., 15, 2024, 10.1039/C2CP43070C
Song, 2013, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C, 1, 38, 10.1039/C2TC00006G
Crespi, 1996, Prediction of a pure-carbon planar covalent metal, Phys. Rev. B, 53, 13303, 10.1103/PhysRevB.53.R13303
Rocquefelte, 2004, How to identify Haeckelite structures: a theoretical study of their electronic and vibrational properties, Nano Lett., 4, 805, 10.1021/nl049879x
Terrones, 2000, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett., 84, 1716, 10.1103/PhysRevLett.84.1716
Yoon, 2016, Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact, Carbon, 99, 58, 10.1016/j.carbon.2015.11.052
Roche, 2015, Graphene spintronics: the European flagship perspective, 2D Materials, 2, 10.1088/2053-1583/2/3/030202
Soriano, 2015, Spin transport in hydrogenated graphene, 2D Materials, 2, 10.1088/2053-1583/2/2/022002
Seifert, 2015, Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization, 2D Materials, 2, 10.1088/2053-1583/2/2/024008
Leconte, 2014, Quantum transport in chemically functionalized graphene at high magnetic field: defect-induced critical states and breakdown of electron-hole symmetry, 2D Materials, 1, 10.1088/2053-1583/1/2/021001
Mortazavi, 2015, Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study, Comput. Mater. Sci., 99, 285, 10.1016/j.commatsci.2014.12.036
Enyashin, 2011, Graphene allotropes, Phys. Status Solidi B, 248, 1879, 10.1002/pssb.201046583
Ewels, 2015, Predicting experimentally stable allotropes: instability of penta-graphene, Proc. Natl. Acad. Sci. U.S.A., 112, 15609, 10.1073/pnas.1520402112
Jiang, 2006, Thermodynamic phase stabilities of nanocarbon, Carbon, 44, 79, 10.1016/j.carbon.2005.07.014
Stauber, 2016, Tight-binding approach to penta-graphene, Sci. Rep., 6, 10.1038/srep22672
Berdiyorov, 2016, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Adv., 6, 50867, 10.1039/C6RA10376F
Xu, 2015, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys., 143, 10.1063/1.4933311
Yu, 2015, A comparative density functional study on electrical properties of layered penta-graphene, J. Appl. Phys., 118, 10.1063/1.4934855
Wang, 2016, Lattice thermal conductivity of penta-graphene, Carbon, 105, 424, 10.1016/j.carbon.2016.04.054
Rajbanshi, 2016, Energetic and electronic structure of penta-graphene nanoribbons, Carbon, 100, 118, 10.1016/j.carbon.2016.01.014
Einollahzadeh, 2016, Computing the band structure and energy gap of penta-graphene by using DFT and G(o)W(o) approximations, Solid State Commun., 229, 1, 10.1016/j.ssc.2015.12.012
Quijano-Briones, 2016, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys., 18, 15505, 10.1039/C6CP02781D
Wu, 2016, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett., 16, 3925, 10.1021/acs.nanolett.6b01536
Li, 2016, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys., 18, 14191, 10.1039/C6CP01092J
Liu, 2016, Disparate strain dependent thermal conductivity of two-dimensional penta-structures, Nano Lett., 16, 3831, 10.1021/acs.nanolett.6b01311
Cranford, 2016, When is 6 less than 5? Penta- to hexa-graphene transition, Carbon, 96, 421, 10.1016/j.carbon.2015.09.092
Wang, 2016, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett., 167, 258, 10.1016/j.matlet.2016.01.017
Denis, 2015, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem., 30, 10.1016/j.comptc.2015.03.012
Denis, 2014, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C, 118, 24976, 10.1021/jp5069895
Schluetter, 2014, Octafunctionalized biphenylenes: molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed., 53, 1538, 10.1002/anie.201309324
Bredas, 1983, Theoretical-study of the electronic-properties of biphenylene polymers – prediction of new highly conducting polymer complexes, J. Polym. Sci. C, 21, 475
Hudspeth, 2010, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano, 4, 4565, 10.1021/nn100758h
Rajca, 1996, Biphenylene dimer. Molecular fragment of a two-dimensional carbon net and double-stranded polymer, J. Am. Chem. Soc., 118, 7272, 10.1021/ja961065y
Karaush, 2014, DFT characterization of a new possible graphene allotrope, Chem. Phys. Lett., 612, 229, 10.1016/j.cplett.2014.08.025
Despres, 1997, A phase transition between carbon allotropes synthesized by a combustion-flame method, Carbon, 35, 1658, 10.1016/S0008-6223(97)82795-9
Seto, 2014, Phase transition and restructuring of carbon nanoparticles induced by aerosol laser irradiation, Carbon, 70, 224, 10.1016/j.carbon.2013.12.111
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B: Condens. Matter, 47, 558, 10.1103/PhysRevB.47.558
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Monkhorst, 1976, Special points for brillouin-zone integrations, Phys. Rev. B, 13, 10.1103/PhysRevB.13.5188
Allen, 1991
Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106
Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355
Rahaman, 2016, A structural insight into mechanical strength of graphene-like carbon and carbon nitride networks, Nanotechnology
Deza, 2000, Pentaheptite modifications of the graphite sheet, J. Chem. Inf. Comput. Sci., 40, 1325, 10.1021/ci000010j
Li, 2014, Graphdiyne and graphyne: from theoretical predictions to practical construction, Chem. Soc. Rev., 43, 2572, 10.1039/c3cs60388a
Andrew, 2012, Mechanical properties of graphene and boronitrene, Phys. Rev. B, 85, 10.1103/PhysRevB.85.125428
Prinzbach, 2000, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C-20, Nature, 407, 60, 10.1038/35024037
Sharma, 2014, Pentahexoctite: a new two-dimensional allotrope of carbon, Sci. Rep., 4, 10.1038/srep07164
Si, 2012, Electronic strengthening of graphene by charge doping, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.226802
Marianetti, 2010, Failure mechanisms of graphene under tension, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.245502
Los, 2015, Melting temperature of graphene, Phys. Rev. B, 91, 10.1103/PhysRevB.91.045415
Ugeda, 2010, Missing atom as a source of carbon magnetism, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.096804
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996
Zhang, 2012, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diam. Relat. Mater., 24, 1, 10.1016/j.diamond.2012.01.033
Cranford, 2011, Mechanical properties of graphyne, Carbon, 49, 4111, 10.1016/j.carbon.2011.05.024