Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension

FlatChem - Tập 1 - Trang 65-73 - 2017
Obaidur Rahaman1, Bohayra Mortazavi2, Arezoo Dianat3, Gianaurelio Cuniberti3, Timon Rabczuk4
1Institute of Structural Mechanics, Bauhaus Universität-Weimar, Marienstr 15, D-99423 Weimar, Germany
2Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423 Weimar, Germany
3Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, D-01062 Dresden, Germany
4College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, China

Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Wang, 2015, Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones, Nano Lett., 15, 6182, 10.1021/acs.nanolett.5b02512 Zhang, 2015, Penta-graphene: a new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A., 112, 2372, 10.1073/pnas.1416591112 Mortazavi, 2016, Amorphized graphene: a stiff material with low thermal conductivity, Carbon, 103C, 318, 10.1016/j.carbon.2016.03.007 Kotakoski, 2015, Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene, Nano Lett., 15, 5944, 10.1021/acs.nanolett.5b02063 Perim, 2014, Inorganic graphenylene: a porous two-dimensional material with tunable band gap, J. Phys. Chem. C, 118, 23670, 10.1021/jp502119y Wang, 2013, Prediction of a new two-dimensional metallic carbon allotrope, Phys. Chem. Chem. Phys., 15, 2024, 10.1039/C2CP43070C Song, 2013, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C, 1, 38, 10.1039/C2TC00006G Crespi, 1996, Prediction of a pure-carbon planar covalent metal, Phys. Rev. B, 53, 13303, 10.1103/PhysRevB.53.R13303 Rocquefelte, 2004, How to identify Haeckelite structures: a theoretical study of their electronic and vibrational properties, Nano Lett., 4, 805, 10.1021/nl049879x Terrones, 2000, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett., 84, 1716, 10.1103/PhysRevLett.84.1716 Yoon, 2016, Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact, Carbon, 99, 58, 10.1016/j.carbon.2015.11.052 Roche, 2015, Graphene spintronics: the European flagship perspective, 2D Materials, 2, 10.1088/2053-1583/2/3/030202 Soriano, 2015, Spin transport in hydrogenated graphene, 2D Materials, 2, 10.1088/2053-1583/2/2/022002 Seifert, 2015, Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization, 2D Materials, 2, 10.1088/2053-1583/2/2/024008 Leconte, 2014, Quantum transport in chemically functionalized graphene at high magnetic field: defect-induced critical states and breakdown of electron-hole symmetry, 2D Materials, 1, 10.1088/2053-1583/1/2/021001 Mortazavi, 2015, Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study, Comput. Mater. Sci., 99, 285, 10.1016/j.commatsci.2014.12.036 Enyashin, 2011, Graphene allotropes, Phys. Status Solidi B, 248, 1879, 10.1002/pssb.201046583 Ewels, 2015, Predicting experimentally stable allotropes: instability of penta-graphene, Proc. Natl. Acad. Sci. U.S.A., 112, 15609, 10.1073/pnas.1520402112 Jiang, 2006, Thermodynamic phase stabilities of nanocarbon, Carbon, 44, 79, 10.1016/j.carbon.2005.07.014 Stauber, 2016, Tight-binding approach to penta-graphene, Sci. Rep., 6, 10.1038/srep22672 Berdiyorov, 2016, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Adv., 6, 50867, 10.1039/C6RA10376F Xu, 2015, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys., 143, 10.1063/1.4933311 Yu, 2015, A comparative density functional study on electrical properties of layered penta-graphene, J. Appl. Phys., 118, 10.1063/1.4934855 Wang, 2016, Lattice thermal conductivity of penta-graphene, Carbon, 105, 424, 10.1016/j.carbon.2016.04.054 Rajbanshi, 2016, Energetic and electronic structure of penta-graphene nanoribbons, Carbon, 100, 118, 10.1016/j.carbon.2016.01.014 Einollahzadeh, 2016, Computing the band structure and energy gap of penta-graphene by using DFT and G(o)W(o) approximations, Solid State Commun., 229, 1, 10.1016/j.ssc.2015.12.012 Quijano-Briones, 2016, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys., 18, 15505, 10.1039/C6CP02781D Wu, 2016, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett., 16, 3925, 10.1021/acs.nanolett.6b01536 Li, 2016, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys., 18, 14191, 10.1039/C6CP01092J Liu, 2016, Disparate strain dependent thermal conductivity of two-dimensional penta-structures, Nano Lett., 16, 3831, 10.1021/acs.nanolett.6b01311 Cranford, 2016, When is 6 less than 5? Penta- to hexa-graphene transition, Carbon, 96, 421, 10.1016/j.carbon.2015.09.092 Wang, 2016, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett., 167, 258, 10.1016/j.matlet.2016.01.017 Denis, 2015, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem., 30, 10.1016/j.comptc.2015.03.012 Denis, 2014, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C, 118, 24976, 10.1021/jp5069895 Schluetter, 2014, Octafunctionalized biphenylenes: molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed., 53, 1538, 10.1002/anie.201309324 Bredas, 1983, Theoretical-study of the electronic-properties of biphenylene polymers – prediction of new highly conducting polymer complexes, J. Polym. Sci. C, 21, 475 Hudspeth, 2010, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano, 4, 4565, 10.1021/nn100758h Rajca, 1996, Biphenylene dimer. Molecular fragment of a two-dimensional carbon net and double-stranded polymer, J. Am. Chem. Soc., 118, 7272, 10.1021/ja961065y Karaush, 2014, DFT characterization of a new possible graphene allotrope, Chem. Phys. Lett., 612, 229, 10.1016/j.cplett.2014.08.025 Despres, 1997, A phase transition between carbon allotropes synthesized by a combustion-flame method, Carbon, 35, 1658, 10.1016/S0008-6223(97)82795-9 Seto, 2014, Phase transition and restructuring of carbon nanoparticles induced by aerosol laser irradiation, Carbon, 70, 224, 10.1016/j.carbon.2013.12.111 Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B: Condens. Matter, 47, 558, 10.1103/PhysRevB.47.558 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Monkhorst, 1976, Special points for brillouin-zone integrations, Phys. Rev. B, 13, 10.1103/PhysRevB.13.5188 Allen, 1991 Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106 Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355 Rahaman, 2016, A structural insight into mechanical strength of graphene-like carbon and carbon nitride networks, Nanotechnology Deza, 2000, Pentaheptite modifications of the graphite sheet, J. Chem. Inf. Comput. Sci., 40, 1325, 10.1021/ci000010j Li, 2014, Graphdiyne and graphyne: from theoretical predictions to practical construction, Chem. Soc. Rev., 43, 2572, 10.1039/c3cs60388a Andrew, 2012, Mechanical properties of graphene and boronitrene, Phys. Rev. B, 85, 10.1103/PhysRevB.85.125428 Prinzbach, 2000, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C-20, Nature, 407, 60, 10.1038/35024037 Sharma, 2014, Pentahexoctite: a new two-dimensional allotrope of carbon, Sci. Rep., 4, 10.1038/srep07164 Si, 2012, Electronic strengthening of graphene by charge doping, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.226802 Marianetti, 2010, Failure mechanisms of graphene under tension, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.245502 Los, 2015, Melting temperature of graphene, Phys. Rev. B, 91, 10.1103/PhysRevB.91.045415 Ugeda, 2010, Missing atom as a source of carbon magnetism, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.096804 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Zhang, 2012, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diam. Relat. Mater., 24, 1, 10.1016/j.diamond.2012.01.033 Cranford, 2011, Mechanical properties of graphyne, Carbon, 49, 4111, 10.1016/j.carbon.2011.05.024