Metamorphic evolution and SIMS U–Pb geochronology of orthopyroxene‐bearing high‐Psemipelitic granulite in the Fuping area, middle Trans‐North China Orogen

Journal of Metamorphic Geology - Tập 39 Số 3 - Trang 297-320 - 2021
Jiahui Liu1, Qian W.L. Zhang1, Juan Wang2, Hui C.G. Zhang1,3, Chun‐Ming Wu1
1College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
2School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
3Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

Tóm tắt

Abstract

The Fuping area lies in the middle part of the Trans‐North China Orogen, which is a critical region for understanding the metamorphic–tectonic evolution of this orogenic belt in the Precambrian. The newly discovered orthopyroxene‐bearing semipelitic granulite in this area is a coherent stratigraphic unit, among which three generations of metamorphic mineral assemblages (peak, post‐peak and cooling retrograde) have been identified based on petrographic observation and mineral chemical analysis. The peak metamorphic mineral assemblage mainly consists of porphyroblastic garnet plus matrix minerals including biotite, plagioclase, orthopyroxene, quartz as well as accessory minerals including pyrite, monazite, zircon and apatite. Geothermobarometry calculations and phase equilibria modelling confirm that the representative samples record differentP–Tconditions and metamorphic stages due to retrogressive metamorphism, with the highestP–Tconditions reaching high‐Pgranulite facies. The retrieved clockwise metamorphicPTpaths pass from 12.5 to 13.5 kbar/855–880℃ (peak stage) through 8.5–11 kbar/850–886℃ (post‐peak stage) and to a speculative cooling phase (retrograde stage), reflecting near isothermal decompression (ITD) followed by near isobaric cooling (IBC). ThisP–Tpath is interpreted to reflect a subduction and/or collision event followed by a rapid exhumation. Secondary ion mass spectrometry (SIMS) U–Pb dating on metamorphic monazite and zircon yielded metamorphic ages ranging from 1,825 to 1,815 Ma, possibly constraining a retrograde metamorphic age. Therefore, the semipelitic granulite in the Fuping area records the subduction/collision event between the Eastern and Western Blocks of the North China Craton during the Late Palaeoproterozoic.

Từ khóa


Tài liệu tham khảo

10.1111/j.1525-1314.1998.00163.x

Bai J., 1986, The Early Precambrian geology of Wutaishan, 376

10.1093/petrology/32.3.629

10.1016/S0009-2541(03)00165-7

10.1086/629159

10.1111/j.1525-1314.1991.tb00518.x

10.1144/gsjgs.150.2.0227

10.1093/petrology/egq059

10.1016/j.precamres.2015.04.013

10.1111/j.1525-1314.2006.00659.x

10.1111/j.1525-1314.2007.00742.x

10.2475/ajs.290.6.666

10.1016/j.epsl.2005.04.033

10.1016/0016-7037(87)90145-1

10.2138/am.2010.3354

10.1111/j.1525-1314.2008.00782.x

10.1016/j.precamres.2017.02.008

10.1144/gsjgs.134.2.0201

10.1093/petrology/25.4.894

10.1130/0091-7613(1988)016<1081:THOSZI>2.3.CO;2

10.1111/j.1525-1314.2004.00532.x

10.1007/BF00310683

10.1086/629321

10.1111/jmg.12211

10.1016/S0301-9268(01)00197-8

10.1046/j.1525-1314.2002.00401.x

10.1111/jmg.12458

10.1017/S0016756811001014

10.1017/S0016756800022330

Hodges K. V., 1987, Realistic propagation of uncertainties in geologic thermobarometry, American Mineralogist, 72, 671

10.2138/am-2002-0113

10.2138/am-2000-0701

Holdaway M. J., 1993, A reevaluation of the stability relations of andalusite: Thermochemical data and phase diagram for the aluminium silicates, American Mineralogist, 78, 298

10.1111/j.1525-1314.1998.00140.x

10.1007/s00410-003-0464-z

10.1111/j.1525-1314.2010.00923.x

10.1111/j.1525-1314.2006.00636.x

Jiang Z. S., 2011, Paleoproterozoic metamorphic P‐T‐t path and tectonic significance of the Luoning metamorphic Complex at the southern terminal of the Trans‐North China Orogen, Henan Province, Acta Petrologica Sinica, 27, 3701

10.1093/petrology/egt029

10.1111/j.1525-1314.2007.00757.x

10.1111/j.1525-1314.2010.00910.x

Kohn M. J., 1991, Error propagation for barometers; 1, Accuracy and precision of experimentally located end‐member reactions, American Mineralogist, 76, 128

Kohn M. J., 1991, Error propagation for barometers: 2. Application to Rocks, American Mineralogist, 76, 138

10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2

10.1111/jmg.12049

10.1016/j.epsl.2014.10.028

10.1007/s11430-016-5103-7

Li J. H., 1998, Discovery of Late Archean Granulites in Luanxian‐Chengde County of North Hebei Province and its tectonic implications, Acta Petrologica Sinica, 14, 35

10.1007/s00410-013-0865-6

10.1111/jmg.12195

10.1007/s00710-016-0478-7

10.1016/j.precamres.2017.11.009

Liu S. W., 1996, Study on the P‐T path of granulites in Fuping area, Hebei Province, Geological Journal of Universities, 2, 75

Liu S. W., 1997, Metamorphism of Al‐rich gneisses in Taihang Mountain Archean metamorphic complex, Acta Petrologica Sinica, 13, 303

10.1016/S0301-9268(02)00063-3

10.1016/j.precamres.2006.04.003

10.1111/j.1525-1314.1997.00033.x

10.1016/j.precamres.2013.09.019

10.1016/j.precamres.2014.06.015

Lu Z., 2014, Delineation of the ca. 2.7 Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance, Acta Petrologica Sinica, 30, 2872

10.1016/j.jseaes.2016.12.001

10.1016/j.precamres.2017.02.014

10.1046/j.1525-1314.2003.00420.x

10.1016/j.jseaes.2004.01.002

10.1130/0091-7613(2002)030<0159:RFOHRE>2.0.CO;2

10.1016/j.gsf.2015.08.005

10.1046/j.1525-1314.2003.00415.x

10.1093/petrology/44.5.867

10.1111/j.1525-1314.1988.tb00415.x

10.1111/j.1525-1314.2007.00756.x

10.1093/petrology/42.11.2083

10.1016/j.precamres.2013.05.012

10.1016/j.jseaes.2017.12.027

10.1111/j.1525-1314.1997.00027.x

10.1016/j.jseaes.2012.12.041

10.2138/am-1996-3-418

10.1007/BF00371465

Spear F. S., 1993, Metamorphic phase equilibria and pressure‐temperature‐time paths, 17

10.1111/jmg.12099

10.1007/BF00375302

10.1515/9781501508172-008

10.1111/j.1525-1314.1990.tb00495.x

10.1007/s00410-014-1059-6

10.1016/j.precamres.2015.07.001

10.1111/jmg.12243

10.1016/j.lithos.2016.01.022

10.1016/j.precamres.2006.04.004

10.1130/0091-7613(1990)018<0839:GARZIG>2.3.CO;2

10.1016/j.precamres.2016.12.008

10.1130/G38834.1

10.1007/s00410-003-0454-1

10.1093/petrology/egi079

10.1111/j.1525-1314.2005.00597.x

10.1046/j.0263-4929.2001.00349.x

10.1111/j.1525-1314.2004.00553.x

10.1046/j.0263-4929.2000.00303.x

10.1111/jmg.12095

10.2138/am.2010.3371

1997 S. A. Wilde P. A. Cawood K. Y. Wang X. L. Qian Z. D. You H. C. Halls The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex North China Craton 75 88

10.1016/j.jseaes.2003.11.006

10.1144/GSL.SP.2004.226.01.02

10.1007/BF02901747

Williams I. S., 1998, Applications of microanalytical techniques to understanding mineralizing processes, 1

10.3390/min9090540

10.1093/petrology/egh038

10.1016/j.precamres.2016.03.001

10.1111/j.1755-6724.2006.tb00307.x

10.1016/j.precamres.2017.08.020

10.1007/s00531-010-0522-5

Xu R. H., 1995, A geochronological study of the Longquanguan ductile shear zone, Quaternary Sciences, 4, 332

10.2475/09.2015.03

10.1016/j.precamres.2013.12.025

Zhai M. G., 1995, Discovery of retrograded eclogites in North China Craton and its implications, Chinese Science Bulletin, 40, 1590

Zhai M. G., 1992, Discovery and preliminary study of the Archean high‐pressure granulites in the North China, Science in China, 12, 1325

10.1016/j.precamres.2016.04.009

Zhang J., 2006, Structures of syn‐deformational granites in the Longquanguan shear zone and their monazite electronic microprobe dating, Acta Geologica Sinica‐English Edition, 80, 864, 10.1111/j.1755-6724.2006.tb00308.x

10.1016/j.lithos.2020.105434

10.1016/j.precamres.2018.04.022

10.1016/S0301-9268(98)00090-4

10.1017/S001675689900254X

10.1093/petrology/42.6.1141

10.1016/S0301-9268(00)00154-6

10.1016/j.precamres.2004.10.002

10.1080/00206819809465233

10.1046/j.1525-1314.2000.00264.x

10.2475/ajs.302.3.191

10.2475/10.2010.10

10.1016/j.gr.2012.08.016

10.1016/j.precamres.2017.07.010