Metalloproteins and the Pyrite-based Origin of Life: A Critical Assessment
Tóm tắt
We critically examine the proposal by Wächtershäuser (Prokaryotes 1:275–283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787–1808, 2006b) that putative transition metal binding sites in protein components of the translation machinery of hyperthermophiles provide evidence of a direct relationship with the FeS clusters of pyrite and thus indicate an autotrophic origin of life in volcanic environments. Analysis of completely sequenced cellular genomes of Bacteria, Archaea and Eucarya does not support the suggestion by Wächtershäuser (Prokaryotes 1:275–283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787–1808, 2006b) that aminoacyl-tRNA synthetases and ribosomal proteins bear sequence signatures typical of strong covalent metal bonding whose absence in mesophilic species reveals a process of adaptation towards less extreme environments.
Tài liệu tham khảo
Bada JL, Lazcano A (2002) Some like it hot, but not biomolecules. Science 296:1982–1983
Bada JL, Lazcano A (2009) The origin of life. In: Ruse M, Travis J (eds) The Harvard companion of evolution. Belknap/Harvard University Press, Cambridge, pp 49–79
Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Albert BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242
Cody GD (2004) Transition metal sulfides and the origins of metabolism. Annu Rev Earth Planet Sci 32:569–599
Cody GD, Boctor NZ, Brandes JA, Filley TR, Hazen RM, Poder HS (2004) Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim Cosmochim Acta 68:2185–2196
Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC, Surerus K, Münck E, McCracken J, Peisach J, Emptage MH (1989) Endonuclease III is an iron-sulfur protein. Biochemistry 16:4450–4455
Dauter Z, Wilson KS, Sieker LC, Moulis J-M, Meyer J (1996) Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: A high-precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci USA 93:8836–8840
Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig Life Evol Biosph 35:537–554
Dresios J, Chan Y-L, Wool IG (2005) Ribosomal Zinc finger proteins: the structure and the function of yeast YL37a. In: Ouchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Landes Bioscience/Eurekha.com and Kluwer Academic/Plenum Publishers, Georgetown, pp 91–98
Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366
Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Biochemistry 55:928–933
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunesekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222
Fox GE (2010) Origin and evolution of the ribosome. In: Deamer DW, Szostak Jack (eds) Cold Spring Harbor perspectives in biology: the origins of life. Cold Spring Harbor Press, Cold Spring Harbor
Hall DO, Cammack R, Rao KK (1971) Role for ferredoxins in origin of life and biological evolution. Nature 233:136
Hall DO, Cammack R, Rao KK (1974a) The iron sulfur proteins: evolution of an ubiquitous protein from model systems to higher organisms. Orig Life 5:363
Hall DO, Cammack R, Rao KK (1974b) The iron-sulphur proteins - Evolution of a ubiquitous protein from the origin of life to higher organisms. In: Dose K, Fox SW, Deborin GA, Pavloskaya TE (eds) The origin of life and evolutionary biochemistry. Plenum, New York, pp 153–168
Han GW, Yang XL, McMullan D, Chong YE, Krishan SS, Rife CL, Weekes D, Brittain SM, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Duan L, Feurhelm J, Grant JC, Grzechnik SK, Jaroszewsku L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Elsliger MA, Schimmel P, Wilson IA (2010) Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster. Acta Crystallogr Sect F Structural Biology Crystal Communications 66:1326–1334
Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412
Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370
Hirata A, Murakami KS (2009) Archaeal RNA polymerase. Curr Opin Struct Biol 19:724–731
Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247
Huber C, Wächtershäuser G (2006) α-hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632
Jadhav VR, Yarus M (2002) Acyl-CoAs from coenzyme ribozymes. Biochemistry 41:723–729
Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281
Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of moleculer sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87:2264–2268
Karlin S, Altschul SF (1993) Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci USA 90:5873–5877
Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14:875–877
Kumar RK, Yarus M (2001) RNA-catalyzed amino acid activation. Biochemistry 40:6998–7004
Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46
Lazcano A (2010) Historical development of origins of life. In: Deamer DW, Szostak J (eds) Cold Spring Harbor Perspectives in biology: the origins of life. Cold Spring Harbor Press, Cold Spring Harbor, pp 1–16
Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 403:831–838
Lipmann F (1965) Projecting backward from the present stage of evolution of biosynthesis. In: Fox SW (ed) The origins of prebiological systems and of their molecular matrices. Academic, New York, pp 259–273
Maden BEH (1995) No soup for starters? Autotrophy and origins of metabolism. Trends Biochem Sci 20:337–341
Malkin R, Rabnowitz JC (1966) The reconstitution of clostridial ferredoxin. Biochem Biophys Res Commun 23:822–827
Martin W, Russell MJ (2003) On the origin of cells: a hypothesis for the evolutionary transition s from abiotic chemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–85
Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887–1925
Meyer J (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13:157–170
Miller WT, Hill KA, Schimmel P (1991) Evidence for a “cysteine-histidine box” metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase. Biochemistry 30:6970–6976
Parker E, Cleaves HJ, Callahan MP, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2010) Prebiotic synthesis of methionine and other sulfur-bearing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment. Origin of Life and Evolution of Biospheres (in press)
Rees DC (2002) Great metalloclusters in enzymology. Annu Rev Biochem 71:221–246
Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc (London) 154:377–402
Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49
Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. Proc Natl Acad Sci USA 101:13168–13173
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
Urlaub H, Kruft V, Bischof O, Müller E-C, Wittman-Liebold B (1995) Protein-rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies. EMBO J 14:4578–4588
Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484
Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201
Wächtershäuser G (1997) The origin of life and its methodological challenge. J Theor Biol 487:483–494
Wächtershäuser G (1998) The case of a hyperthermophilic, chemolithoautotrophic origin go life in an iron-sulfur world. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor and Francis, London, pp 47–57
Wächtershäuser G (2006a) Origin of life: RNA world versus autocatalytic anabolism. Prokaryotes 1:275–283
Wächtershäuser G (2006b) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361:1787–1808
Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chemistry & Diversity 4:584–692
Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ (2007) An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J Biol Chem 282:33444–33451
Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366