Metallogenetic Mn-model of the Rhyacian-aged Buritirama Formation, Carajás domain (Amazon Craton)

Ore Geology Reviews - Tập 138 - Trang 104396 - 2021
Silas Santos Salgado1, Fabrício de Andrade Caxito1, Rosaline Cristina Figueiredo e Silva1, Gabriel Jubé Uhlein1, Leonardo Brandão Nogueira2, Hermínio Arias Nalini Júnior2, Ramon de Oliveira Aranda1
1Centro de Pesquisas Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais (CPMTC-IGC-UFMG), Campus Pampulha, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
2Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

Tài liệu tham khảo

Ague, 2003, Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA, Am. J. Sci., 303, 753, 10.2475/ajs.303.9.753 Algeo, 2020, Redox classification and calibration of redox thresholds in sedimentary systems, Geochim. Cosmochim. Acta, 287, 8, 10.1016/j.gca.2020.01.055 Almeida, 1976, 45 Almeida, 1981, Brazilian structural provinces: an introduction, Earth Sci. Rev., 17, 1, 10.1016/0012-8252(81)90003-9 Anderson, 1974, Ocorrências de manganês na bacia do Rio Itacaiúnas, centro-leste do Estado do Pará, 149 Andrade, 1986, Depósito de manganês da Serra de Buritirama, Pará, 152 ANM, 2018, 2018 Araújo, 1991, 164 Araújo, 1988, A Megaestruturação Arqueana da Folha Serra dos Carajás, 324 Araújo, 2019, Serra sul diamictite of the carajas basin (Brazil): a paleoproterozoic glaciation on the amazonian craton, Geology, 47, 1166, 10.1130/G46923.1 Araújo, 2021, Tectono-sedimentary evolution of the Paleoproterozoic succession of the Carajás Basin, southeastern Amazonian Craton, Brazil: insights from sedimentology, stratigraphy, and U-Pb detrital zircon geochronology, Precambr. Res., 362, 1, 10.1016/j.precamres.2021.106290 Araújo, R.N., Sousa, M.J., 2018. Áreas de Relevante Interesse Mineral – Província Mineral de Carajás, PA: Estratigrafia e Análise do Minério de Mn de Carajás – Área Azul, Sereno, Buritirama e Antônio Vicente. In: Informe de Recursos Minerais – Programa Geologia, Mineração e Transformação Mineral – 16° Série Províncias Minerais do Brasil – Áreas de Relevante Interesse Econômico. CPRM – Serviço Geológico do Brasil, pp. 198. Avelar, 1999, O Magmatismo Arqueano da Região de Tucumã-Província Mineral de Carajás, Novos Resultados Geocronológicos, Rev. Bras. Geociências, 29, 453, 10.25249/0375-7536.1999294453460 Banner, 1990, Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 54, 3123, 10.1016/0016-7037(90)90128-8 Barbosa, 2004, 112 Barros, 2004, Dados Isotópicos Pb-Pb em zircão (evaporação) e Sm-Nd do Complexo Granítico Estrela, Província Mineral de Carajás, Brasil: implicações Petrológicas e Tectônicas, Rev. Bras. de Geociências, 34, 531, 10.25249/0375-7536.2004344531538 Bau, 2006, Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event”, South Afr. J. Geol., 109, 81, 10.2113/gssajg.109.1-2.81 Bau, 2009, Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts, Geochem. J., 43, 37, 10.2343/geochemj.1.0005 Bau, 1997, Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling, Mar. Chem., 56, 123, 10.1016/S0304-4203(96)00091-6 Beisiegel, 1973, Geologia e Recursos Naturais da Serra dos Carajás, Rev. Bras. de Geociências, 3, 215, 10.25249/0375-7536.1973215242 Bekker, 2017 Bekker, 2012, Oxygen overshoot and recovery during the early Paleoproterozoic, Earth Planet. Sci. Lett., 317–318, 295, 10.1016/j.epsl.2011.12.012 Bekker, 2003, Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change?, Precambr. Res., 120, 279, 10.1016/S0301-9268(02)00164-X Bekker, 2006, Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America, Precambrian Res., 148, 145, 10.1016/j.precamres.2006.03.008 Bello, 1978, 154 Benitez-Nelson, 2000, The biogeochemical cycling of phosphorus in marine systems, Earth Sci. Rev., 51, 109, 10.1016/S0012-8252(00)00018-0 Bjorlykke, 1973, Barium Feldspars in Ordovician Sediments, Oslo Region, Norway, SEPM J. Sediment. Res., 43, 461 Beukes, 2016, Manganese deposits of Africa, Episodes, 39, 286, 10.18814/epiiugs/2016/v39i2/95779 Bostick, 2003, Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2), Environ. Sci. Technol., 37, 285, 10.1021/es0257467 Boyle, 1976, On the marine geochemistry of cadmium, Nature, 263, 42, 10.1038/263042a0 Bradley, 2008, Passive margins through earth history, Earth Sci. Rev., 91, 1, 10.1016/j.earscirev.2008.08.001 Bruland, 1980, Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific, Earth Planet. Sci. Lett., 47, 176, 10.1016/0012-821X(80)90035-7 Buick, 1998, High-δ 13 C Paleoproterozoic carbonates from the Transvaal Supergroup, South Africa, Geology, 26, 875, 10.1130/0091-7613(1998)026<0875:HCPCFT>2.3.CO;2 Calvert, 1996, Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales, Econ. Geol., 91, 36, 10.2113/gsecongeo.91.1.36 Calvert, 1993, Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record, Mar. Geol., 113, 67, 10.1016/0025-3227(93)90150-T Canfield, 2013, Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere, Proc. Natl. Acad. Sci. U. S. A., 110, 16736, 10.1073/pnas.1315570110 Chang, 2018, Characteristics and formation processes of (Ba, K, NH 4)-feldspar and cymrite from a lower Cambrian black shale sequence in Anhui Province, South China, Mineral. Mag., 82, 1, 10.1180/minmag.2017.081.017 Chisonga, 2012, Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapa Province, Brazil, Ore Geol. Rev., 47, 59, 10.1016/j.oregeorev.2011.06.006 Condie, 2010, The Archean-Proterozoic boundary: 500 my of tectonic transition in earth history, Am. J. Sci., 310, 775, 10.2475/09.2010.01 Coplen, 1996, New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data, Geochem. Cosmochim. Acta, 60, 3359, 10.1016/0016-7037(96)00263-3 Coplen, 2006, New guidelines for delta13C measurements, Anal. Chem., 78, 2439, 10.1021/ac052027c Cordani, 1984, A Serra dos Carajás como região limítrofe entre províncias tectônicas, Ciências da Terra, 9, 6 Costa, U.A.P, Paula, R.R., Silva, D.P.B., Barbosa, J.P.O., Silva, C.M.G., Tavares, F.M., Oliveira, J.K.M., Justo, A.P., 2016. Programa Geologia do Brasil. Mapa de Integração Geológico-Geofísica da ARIM Carajás, Escala 1:250.000. Estado do Pará. CPRM. Dall'Agnol, 2005, Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil, Lithos, 80, 101, 10.1016/j.lithos.2004.03.058 Dasgupta, 1992, Depositional models for manganese oxide and carbonate deposits of Precambrian Sausar Group, India, Econ. Geol., 87, 1412, 10.2113/gsecongeo.87.5.1412 Delinardo, 2014, 119. Derry, 1990, The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations, Geochim. Cosmochim. Acta, 54, 2965, 10.1016/0016-7037(90)90114-Z DOCEGEO. Rio Doce Geologia e Mineração S.A., 1988. Revisão litoestratigráfica da Província Mineral de Carajás - litoestratigrafia e principais depósitos minerais. In: 35° Congresso Brasileiro de Geologia, Belém, Anais, pp. 11-54. Dubinin, 2003, Geochemistry of the manganese ore process in the ocean: evidence from rare earth elements, Lithol. Miner. Resour., 38, 91, 10.1023/A:1023420324531 Dyer, 1972 Fabre, 2011, Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil): implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition, Chem. Geol., 289, 124, 10.1016/j.chemgeo.2011.07.019 Feio, 2013, Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil, Precambrian Res., 227, 157, 10.1016/j.precamres.2012.04.007 Ferreira Filho, 2007, Mineralizações estratiformes de EGP-Ni associadas a complexos acamadados em Carajás: os exemplos de Luanga e Serra da Onça, 1 Figueiredo e Silva, 2013, Hydrothermal fluid processes and evolution of the Giant Serra Norte Jaspilite-Hosted Iron Ore Deposits, Carajas Mineral Province, Brazil, Econ. Geol. Bull. Soc. Econ. Geol., 108, 739, 10.2113/econgeo.108.4.739 Follmi, 1996, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Sci. Rev., 40, 55, 10.1016/0012-8252(95)00049-6 Force, 1988, A depositional model for shallow–marine manganese deposits around black-shale basins, Econ. Geol., 83, 83, 10.2113/gsecongeo.83.1.93 Frazer, 1981, Geological factors related to characteristics of sea-floor manganese nodule deposits, Deep-Sea Res., 28, 1533, 10.1016/0198-0149(81)90096-0 Froelich, 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 43, 1075, 10.1016/0016-7037(79)90095-4 German, 1990, Application of the Ce anomaly as a paleoredox indicator: the ground rules, Paleoceanography, 5, 823, 10.1029/PA005i005p00823 Grenholm, 2019, The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – insights from comparative studies, with implications for supercontinent cycles, Earth Sci. Rev., 193, 260, 10.1016/j.earscirev.2019.04.017 Gibbs, 1986, Age and composition of the Grão Pará Group volcanics, Serra dos Carajás, Rev. Bras. Geociências, 16, 201, 10.25249/0375-7536.1986201211 Hein, 2013, The geology of Manganese Nodules, 1 Helz, 1996, Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences, Geochim. Cosmochim. Acta, 60, 3631, 10.1016/0016-7037(96)00195-0 Hirata, 1982, Geologia regional da Província Mineral de Carajás, 100 Hood, 2018, The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates, Geochim. Cosmochim. Acta, 232, 265, 10.1016/j.gca.2018.04.022 John, 2014, A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes, Earth Planet. Sci. Lett., 394, 159, 10.1016/j.epsl.2014.02.053 Johnson, 2016, Manganese mineralogy and diagenesis in the sedimentary rock record, Geochim. Cosmochim. Acta, 173, 210, 10.1016/j.gca.2015.10.027 Karhu, 1996, Carbon isotopes and the rise of atmospheric oxygen, Geology, 24, 867, 10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2 Kleinschrot, 1994, Protores and country rocks of the Nsuta manganese deposit (Ghana), N. Jb. Miner. Abh., 168, 67 Krauskopf, 1957, Separation of manganese from iron in sedimentary processes, Geochim. Cosmochim. Acta, 12, 61, 10.1016/0016-7037(57)90018-2 Kuleshov, 2017 Kurian, 2008, Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin, Mar. Geol., 247, 178, 10.1016/j.margeo.2007.09.006 Lindenmayer, 1994, Nota preliminar sobre as intrusões granitóides do depósito de cobre do Salobo, Carajás, Acta Geol. Leopoldensia, 17, 153 Li, 2000 Liu, 2019, Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank, Geochim. Cosmochim. Acta, 248, 25, 10.1016/j.gca.2018.12.028 Lovley, 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 55, 259, 10.1128/mr.55.2.259-287.1991 Lyons, 2014, The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506, 307, 10.1038/nature13068 Macambira, 2003, 217 p. Macambira, 1996, Geocronologia Pb/Pb e tipologia de zircões de rochas vulcânicas da Formação Carajás - Pará: Indicador da idade dos BIF’s, 516 Macambira, 2009, Crustal growth of the central-eastern Paleoproterozoic domain, SW Amazonian craton: Juvenile accretion vs. reworking, J. South Am. Earth Sci., 27, 235, 10.1016/j.jsames.2009.02.001 Machado, 1991, U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil, Precambrian Res., 49, 329, 10.1016/0301-9268(91)90040-H Maheshwari, 2010, Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay, Precambr. Res., 182, 274, 10.1016/j.precamres.2010.06.017 Marangoanha, 2019, Neoarchean A-type granitoids from Carajás province (Brazil): new insights from geochemistry, geochronology and microstructural analysis, Precambr. Res., 324, 86, 10.1016/j.precamres.2019.01.010 Martins, 2017, Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: petrography, geochemistry and tectonic significance of basalts from the Carajás Basin, Precambr. Res., 302, 340, 10.1016/j.precamres.2017.10.013 Matthews, 1978, Oxygen isotope fractionation in decarbonation metamorphism: the Mottled Zone event, Earth Planet. Sci. Lett., 39, 179, 10.1016/0012-821X(78)90154-1 Maynard, 2010, The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments, Econ. Geol., 105, 535, 10.2113/gsecongeo.105.3.535 Maynard, 2014, Manganiferous sediments, rocks, and ores. treatise on geochemistry, 327 McSwiggen, 1994, Occurrence and genetic-implications of hyalophane in manganese-rich iron-formation, Cuyuna-Iron-Range, Minnesota, USA, Mineral. Mag., 58, 387, 10.1180/minmag.1994.058.392.04 Meireles, E.M., Hirata, H.K., Amaral, A.F., Medeiros, Filho, C.A., Gato, W.C. 1984. Geologia das folhas Carajás e Rio Verde, Província Mineral dos Carajás, estado do Pará. In: 33° Congresso Brasileiro de Geologia, Rio de Janeiro, Anais, pp. 2164-2170. Melezhik, 2005, Geochemical preservation potential of high-grade calcite marble versus dolomite marble: implication for isotope chemostratigraphy, Chem. Geol., 216, 203, 10.1016/j.chemgeo.2004.11.020 Moreto, 2014, Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil, Miner. Depos., 50, 517, 10.1007/s00126-014-0549-9 Moreto, 2015, Neoarchean and Paleoproterozoic iron oxide-copper-gold events at the sossego deposit, carajás province, Brazil: Re-Os and U-Pb geochronological evidence, Econ. Geol., 110, 809, 10.2113/econgeo.110.3.809 Morford, 1999, The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 63, 1735, 10.1016/S0016-7037(99)00126-X Morford, 2005, Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin, Geochim. Cosmochim. Acta, 69, 5021, 10.1016/j.gca.2005.05.015 Mougeot, 1996, Geochronological constrains for the age of the Águas Claras Formation (Carajás province, Pará, Brazil), 579 Mucci, 2004, The behavior of mixed Ca-Mn carbonates in water and seawater: controls of manganese concentrations in marine porewaters, Aquat. Geochem., 10, 139, 10.1023/B:AQUA.0000038958.56221.b4 Mücke, 2017, Mineralogical, geochemical and genetic investigations of the algoma-type manganese-formation of Nsuta, Ghana: new insight from subsurface samples, J. Min. Geol., 53, 117 Nascimento, 2007, C- and Sr-isotope systematics applied to Neoproterozoic marbles of the Seridó belt, northeastern Brazil, Chem. Geol., 237, 191, 10.1016/j.chemgeo.2006.06.017 Nayak, 1998, Mn-Piroxenoids from Gangpur Group of Rocks, Orissa, India, J. Min. Petr. Econ. Geol., 93, 380, 10.2465/ganko.93.380 Nogueira, 1995, 167 p. Nyame, 2001, Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese-rich rocks, Contrib. Mineral. Petrol., 141, 733, 10.1007/s004100100257 Nyame, 2006, The genetic significance of carbon and oxygen isotopic variations in Mn-bearing carbonates from the palaeo-proterozoic (~2.2ga) Nsuta Deposit in the birimian of Ghana, Carbonates Evaporites, 21, 21, 10.1007/BF03175465 Okita, 1988, Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore, Geochim. Cosmochim. Acta, 52, 2679, 10.1016/0016-7037(88)90036-1 Okita, 1992, Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China, Chem. Geol., 99, 139, 10.1016/0009-2541(92)90036-5 Oliveira, J.R., Neto, C.S.S., Costa, E.J.S., 1994. Programa Levantamentos Geológicos Básicos do Brasil (PLGB), Carta Geológica, Carta Metalogenética, Escala 1:250.000, Folha SB.22-X-C, Serra Pelada, Estado do Pará. DNPM/CPRM, 220 p. Oliveira, R.G., Teixeira, N.A., Costa, I.S.L., Tavares, F.M., Domingos, N.R.R. 2017. Levantamento Aerogravimétrico Carajás – Contribuição à Tectônica e Metalogenia da Porção Leste do Cráton Amazonas. In: 15° Simpósio de Geologia da Amazônia, Belém. Ordóñez-Calderón, 2008, Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland, Precambr. Res., 161, 317, 10.1016/j.precamres.2007.09.004 Pedersen, 1982, The geochemistry of manganese carbonate in Panama Basin sediments, Geochim. Cosmochim. Acta, 46, 59, 10.1016/0016-7037(82)90290-3 Pereira, 2009, 131 p. Peters, 1977, The manganese deposits of Buritirama (Pará, Brazil), Schweiz, Mineral. Petrogr. Mitt., 57, 313 Pidgeon, 2000, Th-U-Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajas Province, Brazil: evidence for the ages of granulite facies metamorphism and the protolith of the enderbite, Chem. Geol., 166, 159, 10.1016/S0009-2541(99)00190-4 Polgari, 1991, Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary, J. Sediment. Petrol., 61, 384 Rosen, 2007, Metacarbonate and related rocks. A systematic nomenclature for metamorphic rocks: 7 Metacarbonate and related rocks. A proposal on behalf of the IUGS Subcommission on the Systematics of Metamorphic Rocks Roshan, 2017, Controls on the cadmium-phosphate relationship in the tropical South Pacific, Global Biogeochem. Cycl., 31, 1516, 10.1002/2016GB005556 Roy, 2006, Sedimentary manganese metallogenesis in response to the evolution of system earth, Earth Sci. Rev., 77, 273, 10.1016/j.earscirev.2006.03.004 Salgado, 2019, Stratigraphy, petrography and tectonics of the manganese-bearing Buritirama Formation, Northern Carajás Domain, Amazon Craton, Braz. J. Geol., 49, 1, 10.1590/2317-4889201920180106 Salgado, 2019, Provenance of the Buritirama Formation reveals the Paleoproterozoic assembly of the Bacajá and Carajás blocks (Amazon Craton) and the chronocorrelation of Mn-deposits in the Transamazonian/Birimian system of northern Brazil/West Africa, J. South Am. Earth Sci., 96, 102364, 10.1016/j.jsames.2019.102364 Santos, 2003, Geotectônica dos Escudos da Guiana e Brasil Central, 169 Schidlowski, 1976, Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia, Geochim. Cosmochim. Acta, 40, 449, 10.1016/0016-7037(76)90010-7 Schreyer, 1992, Petrologic evidence for a rhodochrosite precursor of spessartine in coticules of the Venn-Stavelot Massif Belgium, Mineral. Mag., 56, 527, 10.1180/minmag.1992.056.385.08 Sharp, 2003, The effect of thermal decarbonation on stable isotope compositions of carbonates, Am. Mineral., 88, 87, 10.2138/am-2003-0111 Shields, 2002, Precambrian marine carbonate isotope database: Version 1.1. Geochemistry, Geophys. Geosystems, 3, 1 of 12, 10.1029/2001GC000266 Silva, G.G., Lima, J.J.C., Andrade, A.R.F., Issler, R.S., Guimarães, G., 1974. Geologia da Folha SC.22 - Tocantins. DNPM, Rio de Janeiro, pp. 143. Smedley, 2017, Molybdenum in natural waters: a review of occurrence, distributions and controls, Appl. Geochem., 84, 387, 10.1016/j.apgeochem.2017.05.008 Souza, 1996, Novos dados geocronológicos para os granitos deformados do Rio Itacaiúnas (Serra dos Carajás, PA); implicações estratigráficas, 380 Suita, 1988, 320 p. Tallarico, 2005, Geology and SHRIMP U-Pb geochronology of the Igarapé Bahia deposit, Carajás copper-gold belt, Brazil: an Archean (2.57 Ga) example of Iron-Oxide Cu-Au-(U-REE) mineralization, Econ. Geol., 100, 7, 10.2113/100.1.0007 Tavares, 2013 Tavares, 2018, The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil: revealing complex structural patterns, J. South Am. Earth Sci., 88, 238, 10.1016/j.jsames.2018.08.024 Taylor, 1985 Thompson, 1975, Calc-silicate diffusion zones between marble and pelitic schist, J. Petrol., 16, 314, 10.1093/petrology/16.1.314 Toledo, 2019, Multistage evolution of the Neoarchean (ca. 2.7 Ga) Igarapé cinzento (GT-46) iron oxide copper-gold deposit, Cinzento shear zone, Carajás Province, Brazil, Econ. Geol., 114, 1, 10.5382/econgeo.2019.4617 Trendall, 1998, SHRIMP zircon U-Pb constraints on the age of the Carajás formation, Grão Pará Group, Amazon Craton, J. South Am. Earth Sci., 11, 265, 10.1016/S0895-9811(98)00015-7 Tribovillard, 2006, Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12, 10.1016/j.chemgeo.2006.02.012 Valarelli, 1978, Metamorfismo de Buritirama, Pará, 1357 Valley, 1986, Stable isotope geochemistry of metamorphic rocks, 445 Vasquez, 2008, 328 p. Von Damm, 1990, Seafloor hydrothermal activity: black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci., 18, 173, 10.1146/annurev.ea.18.050190.001133 Whitney, 2010, Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185, 10.2138/am.2010.3371 Wirth, 1986, U-Pb zircon ages of the Grão-Pará Group and Serra dos Carajás Granite, Rev. Bras. Geociências, 16, 195, 10.25249/0375-7536.1986195200 Xavier, 2012, The iron oxide copper-gold systems of the Carajás Mineral Province, Brazil, Econ. Geol Spec. Publ., 16, 1 Zappettini, 2012, Mineralogía y aspectos genéticos del depósito volcanogénico submarino de manganeso “La Casualidad”, cerro Atravesada, Neuquén, Rev. Asoc. Geolo. Argent., 69, 544 Zheng, 2002, Preservation of particulate non-lithogenic uranium in marine sediments. Geochim. Cosmochim, Acta, 66, 3085 Zheng, 2002, Remobilization of authigenic uranium in marine sediments by bioturbation, Geochim. Cosmochim. Acta, 66, 1759, 10.1016/S0016-7037(01)00886-9