Metallodielectric nanocomposites with enhanced transparency
Tóm tắt
Optical properties of spatially ordered nanocomposites consisting of spherical dielectric and metallic nanoparticles have been investigated. On the basis of the method of integral equations, expressions for the field inside and outside the system have been derived and studied. It has been shown that, depending on the material and geometrical parameters of the nanoaggregate, two different states of the system can be obtained, which differ in the presence or absence of a band gap (interference reflection peak) in the visible range for photons with a certain energy. It is shown that at definite parameters of the nanostructure the scattering and absorption of light by nanoparticles diminishes and the ensemble under consideration becomes transparent. The position of the spectral ranges of transparency of metallic composites on the wavelength scale in this case is determined by the frequency of the polariton resonance inherent in the nanoclusters that form the nanocomposite. A heterogeneous material formed of close-packed dielectric nanospheres is suggested, which at some wavelengths possesses a 100% light transmission.
Tài liệu tham khảo
V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
D. R. Smith and J. B. Pendry, “Homogenization of Metamaterials by Field Averaging,” J. Opt. Soc. Am. B: Opt. Phys. 23, 391–403 (2006).
V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and Nonlinear Wave Propagation in Negative Refraction Metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 165112 (2004).
O. N. Gadomskii and A. S. Shalin, “Effect of Optical Blooming of a Nanocrystalline Monolayer and of the Interface between Two Media,” Zh. Eksper. Teor. Fiz. 132(10), 870–884 (2007) [J. Exp. Theor. Phys. 105 (4),761–773 (2007)].
A. N. Grigorenko, A. K. Geim, H. F. Gleeson, and Y. Zhang, “Nanofabricated Media with Negative Permeability at Visible Frequencies,” Nature 438, 335–338 (2005).
S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and J. S. Juneja, “Very Low-Refractive-Index Optical Thin Films Consisting of an Array of SiO2 Nanorods,” Opt. Lett. 31(5), 601–603 (2006).
F. J. G. de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov,. “Tunneling Mechanism of Light Transmission through Metallic Films,” Phys. Rev. Lett. 95, 067403 (2005). http://arxiv.org/abs/0708.0994v1
A. Alu and N. Engheta, “Achieving Transparency with Plasmonic and Metamaterial Coatings,” Phys. Rev. E: 72, 016623 (2005).
E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), Vol. 1.
P. B. Johnson and R. W. Christy, “Optical Constant of the Noble Metals,” Phys. Rev. B: Solid State 6(12), 4370–4379 (1972).
W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Metamaterials,” Nature Photonics 1, 224–227 (2007).
S. G. Moiseev, E. A. Pashinina, and S. V. Sukhov, “Problem of Transparency of Metal-Dielectric Composite Media with Dissipative and Reinforcing Components,” Kvant. Elektron. 37(5), 446–451 (2007).
A. S. Shalin and S. G. Moiseev, “Optical Properties of Nanostructured Layers on the Surface of an Underlying Medium,” Opt. Spektrosk. 106(6), 1004–1013 (2009) [Opt. Spectrosc. 106 (6), 916–925 (2009)].
A. S. Shalin, “Effective Optical Parameters of Ordered Nanocomposites,” Radiotekh. Elektron. (Moscow) 54(6), 733–741 (2009) [J. Commun. Technol. Electron. 54 (6), 699–707 (2009)].
O. N. Gadomskii and A. S. Shalin, “Optical Near-Field Resonances in the System of Interacting Nanoparticles,” Fiz. Met. Metalloved. 101(5), 462–471 (2006) [Phys. Met. Metallogr. 101 (5), 425–433 (2006)].
M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow 1973).
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
A. S. Shalin, “Effect of the Absolute Transparency of an Ordered Nanocomposite,” Pis’ma Zh. Eksper. Teor. Fiz. 90(4), 279–285 (2009) [JETP Letters 90 (4), 257–262 (2009)].
M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (University press, Cambridge, 2002).
C. M. J. Wijers and G. P. M. Poppe, “Microscopic Treatment of the Angular Dependence of Surface Induced Optical Anisotropy,” Phys. Rev. B: Condens. Matter 46(12), 76057620 (1992).
G. P. M. Poppe, C. M. J. Wijers, and A. Silfhout, “IR Spectroscopy of CO Physisorbed on NaCl(100): Microscopic Treatment,” Phys. Rev. B: Condens. Matter 44(15), 7917–7929 (1991).
A. Moroz, “Metallo-Dielectric Diamond and Zinc-Blende Photonic Crystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 115109 (2002).
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Molding the Flow of Light (University Press, Princeton, 1995).
H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A Negative Permeability Material at Red Light,” Opt. Express 15, 1076–1083 (2007).
P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
M. R. Singh, “Photon Transparency in Metallic Photonic Crystals Doped with an Ensemble of Nanoparticles,” Phys. Rev. A: 79, 013826 (2009).
A. S. Shalin, “Radiative Transitions in Metallic Nanoclusters,” Fiz. Met. Metalloved. 105(2), 137–144 (2008) [Phys. Met. Metallogr. 105 (2), 126–133 (2008)].
O. N. Gadomskii and A. S. Shalin, “Electron States in Metal Clusters,” Zh. Eksper. Teor. Fiz. 131(1), 5–13 (2007) [JETP 104 (1), 1–8 (2007)].
B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and Scattering of Light by a Dimer of Metal Nanospheres: Comparison of Dipole and Multipole Approaches,” Nanotecnology 17(5), 1437–1445 (2006).
V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and N. G. Khlebtsov, “Measurement of Mean Size and Evaluation of Polydispersity of Gold Nanoparticles from Spectra of Optical Absorption and Scattering,” Opt. Spektrosk. 96(1), 139–148 (2004) [Opt. Spectrosc. 96 (1), 128–135 (2004)].
S. V. Sukhov and K. V. Krutitsky, “Discrete Structure of Ultrathin Dielectric Films and Their Surface Optical Properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 65(11), 115407 (2002).