Metal oxides for thermoelectric power generation and beyond
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448
Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431
Dresselhaus M et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053
Takagiwa Y, Pei Y, Pomrehn G, Snyder G (2012) Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett 101:092102
Rowe D, Shukla V (1981) The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot pressed silicon gemanium alloy. J Appl Phys 52:7421
Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479
Liu W, YaN X, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1:42–56
Zhao HB, Hao Q, Xu DC, Lu N (2016) High-throughout ZT predictions of nanoporous bulk materials as next-genertion thermoelectric materials: a material genome approach. Phys Rev B 93:205206
Wei H et al (2017) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-017-0003-4
Yang X, Jiang X, Huang Y, Guo Z, Shao L (2017) Building nanoporous metal-organic frameworks “armor” on fibers for high-performance composite materials. ACS Appl Mater Interfaces 9:5590–5599
Hurwitz E et al (2010) Thermopower study of gan-based materials for next-generation thermoelectric devices and applications. J Electron Mater 40:513–517
Lu N, Ferguson IT (2013) III-Nitrides for energy production: phtovoltaic and thermoelectric applications. Semicond Sci Technol 28:074023
Liu Z, Yi X, Wang J, Kang J, Melton A.G, Shi Y, Lu N, Wang J, Li J, Ferguson IT (2012) Ferromagnetism and its stability in n-type Gd-doped GaN: First-principles calculation. Appl Phys Lett 100(23):232408
Lee M et al (2006) Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nat Mater 5:537–540
Ohta H, Sugiura K, Koumoto K (2008) Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3−. Inorg Chem 47:8429–8436
Pei Y-L, Wu H, Wu D, Zheng F, He J (2014) High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc 136:13902–13908
Funahashi R et al (2008) Thermoelectric properties of CaMnO3 system. Int Conf Thermoelect 124–128
Koumoto K, Wang YF, Zhang RZ, Kosuga A, Funahashi R (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40:363–394. https://doi.org/10.1146/annurev-matsci-070909-104521
Kucukgok B, Hussain B, Zhou CL, Ferguson IT, Lu N (2015) Thermoelectric properties of zno thin film grown by metal-organic chemical vapor deposition. MRS Online Proceedings Library. Cambridge University Press, Cambridge, pp 1805
Yanagiya S, Nong N, Sonne M, Pryds N (2012) Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf and Bi. AIP Conference Proceedings 1449:327
Lan JL, Lin YH, Liu Y, Xu SL, Nan CW (2012) High thermoelectric performance of nanostructured In2O3-based ceramics. J Am Ceram Soc 95:2465–2469
Vaqueiro P, Powell AV (2010) Rencent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20:9577–9584
Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31:11
Nolas GS, Kaeser M, Littleton RT, Tritt TM (2000) High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 77:1855–1857
Koumoto Kunihito WY, Ruizhi Z, Atsuko K, Ryoji F (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40:32
Pei Y et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69
Hicks LD, Dresselhaus M (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631. https://doi.org/10.1103/PhysRevB.47.16631
Zhang F, Lu Q, Zhang J (2009) Synthesis and high temperature thermoelectric properties of BaxAgyCa3−x−yCo4O9 compounds. J Alloys Compd 484:550–554
Nag A, Shubha V (2014) Oxide thermoelectric materials: a structure-property relationship. J Electron Mater 43:962–977. https://doi.org/10.1007/s11664-014-3024-6
Doumerc J-P et al (2009) Transition-metal oxides for thermoelectric generation. J Electron Mater 38:1078–1082
Li Q, Lin Z, Zhou J (2009) Thermoelectric materials with potential high power factors for electricity generation. J Electron Mater 38:1268–1272
Tong XC (2011) Chapter 11: Thermoelectric Cooling Through Thermoelectric Materials In: Advanced Materials for Thermal Management of Electronic Packaging. Springer Series in Advanced Microelectronics, vol 30. Springer, New York, NY
Li N et al (2009) Self-ignition route to Ag-doped Na 1.7 Co 2 O 4 and its thermoelectric properties. J Alloys Compd 467:444–449
Ito M, Furumoto D (2008) Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J Alloys Compd 450:517–520
Nagira T, Ito M, Katsuyama S, Majima K, Nagai H (2003) Thermoelectric properties of (Na1−yMy)xCo2O4 (M= K, Sr, Y, Nd, Sm and Yb; y= 0.01∼0.35). J Alloys Compd 348:263–269
Wang L, Wang M, Zhao D (2009) Thermoelectric properties of c-axis oriented Ni-substituted NaCoO 2 thermoelectric oxide by the citric acid complex method. J Alloys Compd 471:519–523
Bhaskar A, Jhang C-S, Liu C-J (2013) Thermoelectric oroperties of Ca3−xDyxCo4O9+δ with x= 0.00, 0.02, 0.05, and 0.10. J Electron Mater 42:2582–2586
Bhaskar A, Lin Z-R, Liu C-J (2013) Thermoelectric properties of Ca2.95Bi0.05Co4−xFexO 9+δ (0⩽ x⩽ 0.15). Energy Convers Manag 76:63–67
Bhaskar A, Lin Z-R, Liu C-J (2014) Low-temperature thermoelectric and magnetic properties of Ca3−xBixCo4O9+δ (0≤ x≤ 0.30). J Mater Sci 49:1359–1367
Tian R et al (2013) Ga substitution and oxygen diffusion Kinetics in Ca3Co4O9+δ-based thermoelectric oxides. J Phys Chem C 117:13382–13387
Bhaskar A, Yang Z-R, Liu C-J (2015) High temperature thermoelectric properties of co-doped Ca 3−xAgxCo3.95Fe0.05O9+δ (0≤ x≤ 0.3). Ceram Int 41:10456–10460
Wang Y, Sui Y, Cheng J, Wang X, Su W (2007) The thermal-transport properties of the Ca3−xAgxCo4O9 system (0≤ x≤ 0.3). J Phys Condens Matter 19:356216
Fergus JW (2012) Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 32:525–540
Cho J-Y et al (2015) Effect of trivalent bi doping on the seebeck coefficient and electrical resistivity of Ca^ sub 3^ Co^ sub 4^ O^ sub 9. J Electron Mater 44:3621
Wang Y, Sui Y, Wang X, Su W, Liu X (2010) Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication. J Appl Phys 107:033708
Nong N, Liu C-J, Ohtaki M (2010) Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4−xGaxO9+δ (x= 0, 0.05, 0.1, and 0.2). J Alloys Compd 491:53–56
Zhao L et al (2010) Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 97:092118
Zhao L-D et al (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci 7:2900–2924
Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639
Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Materials 2:152–158
Li J et al (2013) Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloys Compd 551:649–653
Li J et al (2012) A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5:8543–8547
Pei Y-L et al (2013) High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Materials 5:e47
Li J et al (2014) The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A 2:4903–4906
Liu Y et al (2016) Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater 6:1502423
Raveau B, Martin C, Maignan A (1998) What about the role of B elements in the CMR properties of ABO(3) perovskites? J Alloys Compd 275:461–467
Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical-transport properties and high-temperature thermoelectric performance of (Ca(0.9)M(0.1))Mno3 (M=Y,La,Ce,Sm,in,Sn,Sb,Pb,Bi). J Solid State Chem 120:105–111
Flahaut D et al (2006) Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 100:084911
Zhang FP, Lu QM, Zhang X, Zhang JX (2013) Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study. J Phys Chem Solids 74:1859–1864
Srivastava D et al (2015) Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: a combined experimental and computational study. J Mater Chem C 3:12245–12259
Bose RSC, Nag A (2016) Effect of dual-doping on the thermoelectric transport properties of CaMn1-xNbx/2Tax/2O3. RSC Adv 6:52318–52325
Bhaskar A, Liu CJ, Yuan JJ (2012) Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3-delta (RE = Sm, Gd, and Dy). J Electron Mater 41:2338–2344
Taguchi H, Nagao M, Sato T, Shimada M (1989) High-temperature phase-transition of Camno3-Delta. J Solid State Chem 78:312–315. https://doi.org/10.1016/0022-4596(89)90113-8
Xu GJ et al (2004) High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics 171:147–151
Bocher L et al (2008) CaMn1-xNbxO3 (x <= 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg Chem 47:8077–8085
Thiel P et al (2013) Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-delta. J Appl Phys 114:243707
Kabir R et al (2015) Role of Bi doping in thermoelectric properties of CaMnO3. J Alloys Compd 628:347–351
Park JW, Kwak DH, Yoon SH, Choi SC (2009) Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J Alloys Compd 487:550–555
Lan JL et al (2010) High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J Am Ceram Soc 93:2121–2124
Nag A, D'Sa F, Shubha V (2015) Doping induced high temperature transport properties of Ca1-xGdxMn1-xNbxO3 (0 <= x <= 0.1). Mater Chem Phys 151:119–125
Riste T, Samuelsen EJ, Otnes K, Feder J (1971) Critical behaviour of SrTiO3 near 105 degrees phase transition. Solid State Commun 9:1455
Ahrens M, Merkle R, Rahmati B, Maier J (2007) Effective masses of electrons in n-type SrTiO3 determined from low-temperature specific heat capacities. Physica B 393:239–248
Dehkordi AM et al (2014) Large thermoelectric power factor in Pr-doped SrTiO3-delta ceramics via grain-boundary-induced mobility enhancement. Chem Mater 26:2478–2485
Ohta S, Nomura T, Ohta H, Koumoto K (2005) High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J Appl Phys 97:034106
Okuda T, Nakanishi K, Miyasaka S, Tokura Y (2001) Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 <= x <= 0.1). Phys Rev B 63:113104
Okinaka N, Zhang LH, Akiyama T (2010) Thermoelectric properties of rare earth-doped SrTiO3 using combination of combustion synthesis (CS) and spark plasma sintering (SPS). ISIJ Int 50:1300–1304
Wang HC et al (2011) Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J Am Ceram Soc 94:838–842
Vaseem M, Umar A, Hahn Y-B (2010) ZnO nanoparticles: growth, properties and applications In: Metal Oxide Nanostructures and Their Application, vol 5. American Scientific Publishers, New York, pp 1–36
Hussain B, Raja MYA, Lu N, Ferguson IT (2013) Application and synthesis of zinc oxide: an emerging wide bandgap material. High Capacity Optical Networks and Enabling Technologies (HONET-CNS), 2013 10th International Conference, IEEE, Cyprus, pp 88–93
Jood P, Mehta RJ, Zhang Y, Peleckis G, Wang X, Siegel RW, Borca-Tasciuc T, Dou S, Ramanath G (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11:4337–4342
Ma N, Li JF, Zhang BP, Lin YH, Ren LR, Chen GF (2010) Microstructure and thermoelectric properties of Zn1−xAlxO ceramics fabricated by spark plasma sintering. J Phys Chem Solids 71:1344–1349
Hussain B et al (2014) Is ZnO as a univeral semiconductor material an oxymoron? Proc of SPIE. International Society for Optics and Photonics, pp 898718-898718-14
Kucukgok B, Wang B, Melton AG, Lu N, Ferguson IT (2014) Comparison of thermoelectric properties of GaN and ZnO samples. Phy Status Solidi C 11:894–897
Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J Mater Chem 7:85–90
Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 38:1234–1238
Park K, Hwang H, Seo J, Seo W-S (2013) Enhanced high-temperature thermoelectric properties of Ce-and Dy-doped ZnO for power generation. Energy 54:139–145
Chappel S, Zaban A (2002) Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids. Sol Energy Mater Sol Cells 71:141–152
Olivi P, Pereira EC, Longo E, Varella JA, Bulhoes S (1993) Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic decives. J Electrochem Soc 140:L81_L82
Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A Gen 200:211–217
Bueno P et al (1998) Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. J Appl Phys 84:3700
Leite ER, Weber IT, Longo E, Varela JA (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12:965
Rubenis K et al (2017) Thermoelectric properties of dense Sb-doped SnO2 ceramics. J Alloys Compd 692:515–521
Yanagiya S, Nong N, Xu GJ, Sonne M, Pryds N (2011) Thermoelectric properties of SnO2 ceramics doped with Sb and Zn. J Electron Mater 40:674–677
Tsubota T, Kobayashi S, Murakami N, Ohno T (2014) Improvement of thermoelectric performance for Sb-doped SnO2 ceramics material by addition of Cu as sintering additive. J Electron Mater 43:3567
Tsubota T, Ohno T, Shiraishi N, Miyazaki Y (2008) Thermoelectric properties of Sn1-x-yTiySbxO2 ceramics. J Alloys Compd 463:288–293
Berardan D, Guilmeau E, Maignan A, Raveau B (2008) In2O3: Ge, a promising n-type thermoelectric oxide composite. Solid State Commun 146:97–101
van Hest MFAM, Dabney MS, Perkins JD, Ginley DS (2006) High-mobility molybdenum doped indium oxide. Thin Solid Films 496:70–74
van Hest MFAM, Dabney MS, Perkins JD, Ginley DS, Taylor MP (2005) Titanium-doped indium oxide: a high-mobility transparent conductor. Appl Phys Lett 87:032111
Koida T, Kondo M (2007) Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach. J Appl Phys 101:063713
Li XF, Zhang Q, Miao WN, Huang L, Zhang ZJ (2006) Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films 515:2471–2474
Liu Y et al (2010) Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. J Am Ceram Soc 93:2938–2941
Liu Y et al (2015) Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Phys Chem Chem Phys 17:11229–11233
Matsubara I et al (2001) Fabrication of an all-oxide thermoelectric power generator. Appl Phys Lett 78:3627
Man EA, Schaltz E, Rosendahl L, Rezaniakolaei A, Platzek D (2015) A high temperature experimental characterization procedure for oxide-based thermoelectric generator modules under transient conditions. Energies 8:12839–12847
Zhou CL et al (2017) ZnO for solar cell and thermoelectric applications. Proc SPIE 10105:101051K–1101051
Wang N et al (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Rep 3:3449
Xu T et al (2017) Superior Cu2S/brass-mesh electrode in CdS quantum dot sensitized solar cells for dual-side illumination. Mater Lett 195:100–103
Liu T et al (2017) Ni nanobelts induced enhancement of hole transport and collection for high efficiency and ambient stable mesoscopic perovskite solar cells. J Mater Chem A 5:4292–4299
Hu W et al (2017) Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J Mater Chem A 5:1434–1441
Rajan J, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92:13
Durr M, Rosselli S, Yasuda A, Nelles G (2006) Band-gap engineering of metal oxides for dye-sensitized solar cells. J Phys Chem B 110:4