Metal oxides for thermoelectric power generation and beyond

Springer Science and Business Media LLC - Tập 1 Số 1 - Trang 114-126 - 2018
Yining Feng1, Xiaodong Jiang1, Ehsan Ghafari1, Bahadir Küçükgök2, Chaoyi Zhang1, Ian T. Ferguson3, Na Lü4
1Lyles School of Civil Engineering, Sustainable Materials and Renewable Technology (SMART) Laboratory, Purdue University, West Lafayette, USA
2Birck Nanotechnology Center, Purdue University, West Lafayette, USA
3College of Engineering and Computing, Missouri University of Science and Technology, Rolla, USA
4Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448

Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431

Webb JH (1962) Thermoelectricity: science and engineering. J Am Chem Soc 84:690–691

Dresselhaus M et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

Takagiwa Y, Pei Y, Pomrehn G, Snyder G (2012) Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett 101:092102

Rowe D, Shukla V (1981) The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot pressed silicon gemanium alloy. J Appl Phys 52:7421

Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479

Liu W, YaN X, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1:42–56

Zhao HB, Hao Q, Xu DC, Lu N (2016) High-throughout ZT predictions of nanoporous bulk materials as next-genertion thermoelectric materials: a material genome approach. Phys Rev B 93:205206

Wei H et al (2017) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-017-0003-4

Yang X, Jiang X, Huang Y, Guo Z, Shao L (2017) Building nanoporous metal-organic frameworks “armor” on fibers for high-performance composite materials. ACS Appl Mater Interfaces 9:5590–5599

Hurwitz E et al (2010) Thermopower study of gan-based materials for next-generation thermoelectric devices and applications. J Electron Mater 40:513–517

Lu N, Ferguson IT (2013) III-Nitrides for energy production: phtovoltaic and thermoelectric applications. Semicond Sci Technol 28:074023

Liu Z, Yi X, Wang J, Kang J, Melton A.G, Shi Y, Lu N, Wang J, Li J, Ferguson IT (2012) Ferromagnetism and its stability in n-type Gd-doped GaN: First-principles calculation. Appl Phys Lett 100(23):232408

Lee M et al (2006) Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nat Mater 5:537–540

Ohta H, Sugiura K, Koumoto K (2008) Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3−. Inorg Chem 47:8429–8436

Pei Y-L, Wu H, Wu D, Zheng F, He J (2014) High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc 136:13902–13908

Funahashi R et al (2008) Thermoelectric properties of CaMnO3 system. Int Conf Thermoelect 124–128

Koumoto K, Wang YF, Zhang RZ, Kosuga A, Funahashi R (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40:363–394. https://doi.org/10.1146/annurev-matsci-070909-104521

Kucukgok B, Hussain B, Zhou CL, Ferguson IT, Lu N (2015) Thermoelectric properties of zno thin film grown by metal-organic chemical vapor deposition. MRS Online Proceedings Library. Cambridge University Press, Cambridge, pp 1805

Yanagiya S, Nong N, Sonne M, Pryds N (2012) Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf and Bi. AIP Conference Proceedings 1449:327

Lan JL, Lin YH, Liu Y, Xu SL, Nan CW (2012) High thermoelectric performance of nanostructured In2O3-based ceramics. J Am Ceram Soc 95:2465–2469

Vaqueiro P, Powell AV (2010) Rencent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20:9577–9584

Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31:11

Nolas GS, Kaeser M, Littleton RT, Tritt TM (2000) High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 77:1855–1857

Koumoto Kunihito WY, Ruizhi Z, Atsuko K, Ryoji F (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40:32

Pei Y et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69

Hicks LD, Dresselhaus M (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631. https://doi.org/10.1103/PhysRevB.47.16631

Zhang F, Lu Q, Zhang J (2009) Synthesis and high temperature thermoelectric properties of BaxAgyCa3−x−yCo4O9 compounds. J Alloys Compd 484:550–554

Nag A, Shubha V (2014) Oxide thermoelectric materials: a structure-property relationship. J Electron Mater 43:962–977. https://doi.org/10.1007/s11664-014-3024-6

Doumerc J-P et al (2009) Transition-metal oxides for thermoelectric generation. J Electron Mater 38:1078–1082

Li Q, Lin Z, Zhou J (2009) Thermoelectric materials with potential high power factors for electricity generation. J Electron Mater 38:1268–1272

Tong XC (2011) Chapter 11: Thermoelectric Cooling Through Thermoelectric Materials In: Advanced Materials for Thermal Management of Electronic Packaging. Springer Series in Advanced Microelectronics, vol 30. Springer, New York, NY

Li N et al (2009) Self-ignition route to Ag-doped Na 1.7 Co 2 O 4 and its thermoelectric properties. J Alloys Compd 467:444–449

Ito M, Furumoto D (2008) Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J Alloys Compd 450:517–520

Nagira T, Ito M, Katsuyama S, Majima K, Nagai H (2003) Thermoelectric properties of (Na1−yMy)xCo2O4 (M= K, Sr, Y, Nd, Sm and Yb; y= 0.01∼0.35). J Alloys Compd 348:263–269

Wang L, Wang M, Zhao D (2009) Thermoelectric properties of c-axis oriented Ni-substituted NaCoO 2 thermoelectric oxide by the citric acid complex method. J Alloys Compd 471:519–523

Bhaskar A, Jhang C-S, Liu C-J (2013) Thermoelectric oroperties of Ca3−xDyxCo4O9+δ with x= 0.00, 0.02, 0.05, and 0.10. J Electron Mater 42:2582–2586

Bhaskar A, Lin Z-R, Liu C-J (2013) Thermoelectric properties of Ca2.95Bi0.05Co4−xFexO 9+δ (0⩽ x⩽ 0.15). Energy Convers Manag 76:63–67

Bhaskar A, Lin Z-R, Liu C-J (2014) Low-temperature thermoelectric and magnetic properties of Ca3−xBixCo4O9+δ (0≤ x≤ 0.30). J Mater Sci 49:1359–1367

Tian R et al (2013) Ga substitution and oxygen diffusion Kinetics in Ca3Co4O9+δ-based thermoelectric oxides. J Phys Chem C 117:13382–13387

Bhaskar A, Yang Z-R, Liu C-J (2015) High temperature thermoelectric properties of co-doped Ca 3−xAgxCo3.95Fe0.05O9+δ (0≤ x≤ 0.3). Ceram Int 41:10456–10460

Wang Y, Sui Y, Cheng J, Wang X, Su W (2007) The thermal-transport properties of the Ca3−xAgxCo4O9 system (0≤ x≤ 0.3). J Phys Condens Matter 19:356216

Fergus JW (2012) Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 32:525–540

Cho J-Y et al (2015) Effect of trivalent bi doping on the seebeck coefficient and electrical resistivity of Ca^ sub 3^ Co^ sub 4^ O^ sub 9. J Electron Mater 44:3621

Wang Y, Sui Y, Wang X, Su W, Liu X (2010) Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication. J Appl Phys 107:033708

Nong N, Liu C-J, Ohtaki M (2010) Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4−xGaxO9+δ (x= 0, 0.05, 0.1, and 0.2). J Alloys Compd 491:53–56

Zhao L et al (2010) Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 97:092118

Zhao L-D et al (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci 7:2900–2924

Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Materials 2:152–158

Kanatzidis MG (2009) Nanostructured thermoelectrics: the new paradigm? Chem Mater 22:648–659

Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

Li J et al (2013) Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloys Compd 551:649–653

Li J et al (2012) A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5:8543–8547

Pei Y-L et al (2013) High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Materials 5:e47

Li J et al (2014) The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A 2:4903–4906

Liu Y et al (2016) Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater 6:1502423

Raveau B, Martin C, Maignan A (1998) What about the role of B elements in the CMR properties of ABO(3) perovskites? J Alloys Compd 275:461–467

Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical-transport properties and high-temperature thermoelectric performance of (Ca(0.9)M(0.1))Mno3 (M=Y,La,Ce,Sm,in,Sn,Sb,Pb,Bi). J Solid State Chem 120:105–111

Flahaut D et al (2006) Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 100:084911

Zhang FP, Lu QM, Zhang X, Zhang JX (2013) Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study. J Phys Chem Solids 74:1859–1864

Koumoto K et al (2013) Thermoelectric ceramics for energy harvesting. J Am Ceram Soc 96:1–23

Srivastava D et al (2015) Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: a combined experimental and computational study. J Mater Chem C 3:12245–12259

Bose RSC, Nag A (2016) Effect of dual-doping on the thermoelectric transport properties of CaMn1-xNbx/2Tax/2O3. RSC Adv 6:52318–52325

Bhaskar A, Liu CJ, Yuan JJ (2012) Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3-delta (RE = Sm, Gd, and Dy). J Electron Mater 41:2338–2344

Taguchi H, Nagao M, Sato T, Shimada M (1989) High-temperature phase-transition of Camno3-Delta. J Solid State Chem 78:312–315. https://doi.org/10.1016/0022-4596(89)90113-8

Xu GJ et al (2004) High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics 171:147–151

Bocher L et al (2008) CaMn1-xNbxO3 (x <= 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg Chem 47:8077–8085

Miclau M et al (2007) Structural and magnetic transitions in CaMn1-xWxO3. Chem Mater 19:4243–4251

Thiel P et al (2013) Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-delta. J Appl Phys 114:243707

Kabir R et al (2015) Role of Bi doping in thermoelectric properties of CaMnO3. J Alloys Compd 628:347–351

Park JW, Kwak DH, Yoon SH, Choi SC (2009) Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J Alloys Compd 487:550–555

Lan JL et al (2010) High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J Am Ceram Soc 93:2121–2124

Nag A, D'Sa F, Shubha V (2015) Doping induced high temperature transport properties of Ca1-xGdxMn1-xNbxO3 (0 <= x <= 0.1). Mater Chem Phys 151:119–125

Riste T, Samuelsen EJ, Otnes K, Feder J (1971) Critical behaviour of SrTiO3 near 105 degrees phase transition. Solid State Commun 9:1455

Mattheiss LF (1972) Energy-bands for KNiF3, SrTiO3, KMoO3, and KTaO3. Phys Rev B 6:4718–4740

Ahrens M, Merkle R, Rahmati B, Maier J (2007) Effective masses of electrons in n-type SrTiO3 determined from low-temperature specific heat capacities. Physica B 393:239–248

Dehkordi AM et al (2014) Large thermoelectric power factor in Pr-doped SrTiO3-delta ceramics via grain-boundary-induced mobility enhancement. Chem Mater 26:2478–2485

Ohta S, Nomura T, Ohta H, Koumoto K (2005) High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J Appl Phys 97:034106

Okuda T, Nakanishi K, Miyasaka S, Tokura Y (2001) Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 <= x <= 0.1). Phys Rev B 63:113104

Walia S et al (2013) Transition metal oxides—thermoelectric properties. Prog Mater Sci 58:1443–1489

Ohta H (2007) Thermoelectrics based on strontium titanate. Mater Today 10:44–49

Okinaka N, Zhang LH, Akiyama T (2010) Thermoelectric properties of rare earth-doped SrTiO3 using combination of combustion synthesis (CS) and spark plasma sintering (SPS). ISIJ Int 50:1300–1304

Wang HC et al (2011) Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J Am Ceram Soc 94:838–842

Vaseem M, Umar A, Hahn Y-B (2010) ZnO nanoparticles: growth, properties and applications In: Metal Oxide Nanostructures and Their Application, vol 5. American Scientific Publishers, New York, pp 1–36

Hussain B, Raja MYA, Lu N, Ferguson IT (2013) Application and synthesis of zinc oxide: an emerging wide bandgap material. High Capacity Optical Networks and Enabling Technologies (HONET-CNS), 2013 10th International Conference, IEEE, Cyprus, pp 88–93

Jood P, Mehta RJ, Zhang Y, Peleckis G, Wang X, Siegel RW, Borca-Tasciuc T, Dou S, Ramanath G (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11:4337–4342

Ma N, Li JF, Zhang BP, Lin YH, Ren LR, Chen GF (2010) Microstructure and thermoelectric properties of Zn1−xAlxO ceramics fabricated by spark plasma sintering. J Phys Chem Solids 71:1344–1349

Hussain B et al (2014) Is ZnO as a univeral semiconductor material an oxymoron? Proc of SPIE. International Society for Optics and Photonics, pp 898718-898718-14

Kucukgok B, Wang B, Melton AG, Lu N, Ferguson IT (2014) Comparison of thermoelectric properties of GaN and ZnO samples. Phy Status Solidi C 11:894–897

Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J Mater Chem 7:85–90

Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 38:1234–1238

Park K, Hwang H, Seo J, Seo W-S (2013) Enhanced high-temperature thermoelectric properties of Ce-and Dy-doped ZnO for power generation. Energy 54:139–145

Chappel S, Zaban A (2002) Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids. Sol Energy Mater Sol Cells 71:141–152

Olivi P, Pereira EC, Longo E, Varella JA, Bulhoes S (1993) Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic decives. J Electrochem Soc 140:L81_L82

Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A Gen 200:211–217

Bueno P et al (1998) Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. J Appl Phys 84:3700

Leite ER, Weber IT, Longo E, Varela JA (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12:965

Rubenis K et al (2017) Thermoelectric properties of dense Sb-doped SnO2 ceramics. J Alloys Compd 692:515–521

Yanagiya S, Nong N, Xu GJ, Sonne M, Pryds N (2011) Thermoelectric properties of SnO2 ceramics doped with Sb and Zn. J Electron Mater 40:674–677

Tsubota T, Kobayashi S, Murakami N, Ohno T (2014) Improvement of thermoelectric performance for Sb-doped SnO2 ceramics material by addition of Cu as sintering additive. J Electron Mater 43:3567

Tsubota T, Ohno T, Shiraishi N, Miyazaki Y (2008) Thermoelectric properties of Sn1-x-yTiySbxO2 ceramics. J Alloys Compd 463:288–293

Berardan D, Guilmeau E, Maignan A, Raveau B (2008) In2O3: Ge, a promising n-type thermoelectric oxide composite. Solid State Commun 146:97–101

van Hest MFAM, Dabney MS, Perkins JD, Ginley DS (2006) High-mobility molybdenum doped indium oxide. Thin Solid Films 496:70–74

Meng Y et al (2001) A new transparent conductive thin film In2O3: Mo. Thin Solid Films 394:219–223

van Hest MFAM, Dabney MS, Perkins JD, Ginley DS, Taylor MP (2005) Titanium-doped indium oxide: a high-mobility transparent conductor. Appl Phys Lett 87:032111

Koida T, Kondo M (2007) Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach. J Appl Phys 101:063713

Li XF, Zhang Q, Miao WN, Huang L, Zhang ZJ (2006) Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films 515:2471–2474

Liu Y et al (2010) Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. J Am Ceram Soc 93:2938–2941

Liu Y et al (2015) Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Phys Chem Chem Phys 17:11229–11233

Matsubara I et al (2001) Fabrication of an all-oxide thermoelectric power generator. Appl Phys Lett 78:3627

Man EA, Schaltz E, Rosendahl L, Rezaniakolaei A, Platzek D (2015) A high temperature experimental characterization procedure for oxide-based thermoelectric generator modules under transient conditions. Energies 8:12839–12847

Zhou CL et al (2017) ZnO for solar cell and thermoelectric applications. Proc SPIE 10105:101051K–1101051

Wang N et al (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Rep 3:3449

Xu T et al (2017) Superior Cu2S/brass-mesh electrode in CdS quantum dot sensitized solar cells for dual-side illumination. Mater Lett 195:100–103

Liu T et al (2017) Ni nanobelts induced enhancement of hole transport and collection for high efficiency and ambient stable mesoscopic perovskite solar cells. J Mater Chem A 5:4292–4299

Hu W et al (2017) Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J Mater Chem A 5:1434–1441

Rajan J, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92:13

Durr M, Rosselli S, Yasuda A, Nelles G (2006) Band-gap engineering of metal oxides for dye-sensitized solar cells. J Phys Chem B 110:4

Barbi GB, Santos JP, Serrini P, Gibson PN, Horrillo MC, Manes L (1995) Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments. Sensors Actuators: B Chem 25:5