Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction

Nano Convergence - Tập 8 Số 1 - 2021
Chanderpratap Singh1, Subhabrata Mukhopadhyay1, Idan Hod1
1Department of Chemistry and Ilse, Katz Institute for Nanoscale Science and Technology, Ben- Gurion University of Negev, 8410501, Beer-Sheva, Israel

Tóm tắt

AbstractIn recent years, we are witnessing a substantially growing scientific interest in MOFs and their derived materials in the field of electrocatalysis. MOFs acting as a self-sacrificing template offer various advantages for the synthesis of carbon-rich materials, metal oxides, and metal nanostructures containing graphitic carbon-based materials benefiting from the high surface area, porous structure, and abundance of metal sites and organic functionalities. Yet, despite recent advancement in the field of MOF-derived materials, there are still several significant challenges that should be overcomed, to obtain better control and understanding on the factors determining their chemical, structural and catalytic nature. In this minireview, we will discuss recently reported advances in the development of promising methods and strategies for the construction of functional MOF-derived materials and their application as highly-active electrocatalysts for two important energy-related reactions: nitrogen reduction to produce ammonia, and CO2 reduction into carbon-based fuels. Moreover, a discussion containing assessments and remarks on the possible future developments of MOF-derived materials toward efficient electrocatalysis is included.

Từ khóa


Tài liệu tham khảo

S. Chu, A. Majumdar, Nature 488, 294 (2012)

N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. U. S. A. 103, 15729 (2006)

H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 1230444 (2013)

H. Furukawa et al, Science 329, 424 (2010)

N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Chem. Soc. Rev. 46, 337 (2017)

C. Dey, T. Kundu, B.P. Biswal, A. Mallick, R. Banerjee, Acta Crystallogr. Sect. B 70, 3 (2014)

R. Das, P. Pachfule, R. Banerjee, P. Poddar, Nanoscale 4, 591 (2012)

Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Coord. Chem. Rev. 362, 1 (2018)

S. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 3, 17075 (2017)

J. Liu, D. Zhu, C. Guo, A. Vasileff, S.-Z. Qiao, Adv. Energy Mater. 7, 1700518 (2017)

P. Pachfule, V.M. Dhavale, S. Kandambeth, S. Kurungot, R. Banerjee, Chem. Eur. J. 19, 974 (2013)

J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 8, 14969 (2017)

B.Y. Guan, L. Yu, X.W.D. Lou, in Adv Sci (Weinh)2017), p. 1700247

W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 8, 1404 (2015)

B.M. Hunter, W. Hieringer, J.R. Winkler, H.B. Gray, A.M. Müller, Energy Environ. Sci. 9, 1734 (2016)

S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, R. Banerjee, Chem. Mater. 29, 2074 (2017)

J.-B. Tan, G.-R. Li, J. Mater. Chem. A 8, 14326 (2020)

J.-B. Raoof, S.R. Hosseini, R. Ojani, S. Mandegarzad, Energy 90, 1075 (2015)

D. Song et al., J. Am. Chem. Soc. 141, 7853 (2019)

R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, ACS Nano 9, 6288 (2015)

R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11, 5293 (2017)

R. Shimoni, W. He, I. Liberman, I. Hod, J. Phys. Chem. C 123, 5531 (2019)

I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, I. Hod, J. Am. Chem. Soc. 142, 1933 (2020)

W. Chen et al., Adv. Mater. 30, 1800396 (2018)

W. He, R. Ifraemov, A. Raslin, I. Hod, Adv. Funct. Mater. 28, 1707244 (2018)

L. Hu, Y. Hu, R. Liu, Y. Mao, M.S. Balogun, Y. Tong, Int. J. Hydrog. Energy 44, 11402 (2019)

L. Peng et al, ACS Catal. 7, 8184 (2017)

W. He, H.-M. Gao, R. Shimoni, Z.-Y. Lu, I. Hod, ACS Appl. Energy Mater. 2, 2138 (2019)

W. He, I. Liberman, I. Rozenberg, R. Ifraemov, I. Hod, Angew Chemie Int. Ed. 59, 8262 (2020)

F.-L. Li, Q. Shao, X. Huang, J.-P. Lang, Angew Chemie Int. Ed. 57, 1888 (2018)

S. Zhao et al, Nat. Energy 1, 16184 (2016)

Z. Wang, S.M. Cohen, Chem. Soc. Rev. 38, 1315 (2009)

H.B. Wu, X.W. Lou, Sci. Adv. 3, eaap9252 (2017)

B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy 1, 15006 (2016)

X. Deng, J. Li, L. Ma, J. Sha, N. Zhao, Mater. Chem. Front. 3, 2221 (2019)

L. Wang, X. Hu, Chem. Asian J. 13, 1518 (2018)

H. Zhang et al, ACS Nano 10, 684 (2016)

S. Luo, X. Li, B. Zhang, Z. Luo, M. Luo, ACS Appl. Mater. Interfaces 11, 26891 (2019)

L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 6, 6590 (2014)

Q. Shao, J. Yang, X. Huang, Chem. Eur. J. 24, 15143 (2018)

S. Mukherjee et al, Nano Energy 48, 217 (2018)

L. Ye, G. Chai, Z. Wen, Adv. Funct. Mater. 27, 1606190 (2017)

S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Adv. Mater. 29, 1700874 (2017)

X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, ACS Appl. Mater. Interfaces 9, 23222 (2017)

C. Zhang, Y.-C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Adv. Mater. 29, 1604556 (2017)

S. Gadipelli, T. Zhao, S.A. Shevlin, Z. Guo, Energy Environ. Sci. 9, 1661 (2016)

C. Singh, I. Liberman, R. Shimoni, R. Ifraemov, I. Hod, J. Phys. Chem. Lett. 10, 3630 (2019)

S. Kampouri, C.P. Ireland, B. Valizadeh, E. Oveisi, P.A. Schouwink, M. Mensi, K.C. Stylianou, ACS Appl. Energy Mater. 1, 6541 (2018)

H. Shin et al. Bull. Korean Chem. Soc. (2020). https://doi.org/10.1002/bkcs.12141

B. You, N. Jiang, M. Sheng, S. Gul, J. Yano, Y. Sun, Chem. Mater. 27, 7636 (2015)

B. Tang et al, J. Mater. Chem. A 7, 13339 (2019)

B.A. Rosen, I. Hod, Adv. Mater. 30, 1706238 (2018)

K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 6, 5887 (2016)

F.N. Al-Rowaili, A. Jamal, M.S. Ba, Shammakh, A. Rana, ACS Sustain. Chem. Eng. 6, 15895 (2018)

Q. Cui, G. Qin, W. Wang, G.K. R, A. Du, Q. Sun, J. Mater. Chem. A 7, 14510 (2019)

Y. Wang et al, ACS Catal. 9, 336 (2019)

B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane, Nat. Catal. 2, 290 (2019)

W. Qiu et al, Nat. Commun. 9, 3485 (2018)

X. Guo, H. Du, F. Qu, J. Li, J. Mater. Chem. A 7, 3531 (2019)

G. Zheng, J.-M. Yan, G. Yu, Small Methods 3, 1900070 (2019)

J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castaño, A. Irabien, ChemSusChem 10, 1100 (2017)

P. Shao, L. Yi, S. Chen, T. Zhou, J. Zhang, J. Energy Chem. 40, 156 (2020)

Z. Han, R. Kortlever, H.-Y. Chen, J.C. Peters, T. Agapie, ACS Cent. Sci. 3, 853 (2017)

Y. Ye et al, Nano Energy 38, 281 (2017)

C. Zhao et al, J. Am. Chem. Soc. 139, 8078 (2017)

M. Perfecto-Irigaray, J. Albo, G. Beobide, O. Castillo, A. Irabien, S. Pérez-Yáñez, RSC Adv. 8, 21092 (2018)

D.-H. Nam et al, J. Am. Chem. Soc. 140, 11378 (2018)

X. Wang et al, Angew. Chemie. Int. Ed. 57, 1944 (2018)

Y. Guo, H. Yang, X. Zhou, K. Liu, C. Zhang, Z. Zhou, C. Wang, W. Lin, J. Mater. Chem. A 5, 24867 (2017)

J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, Appl. Catal. 225, 563 (2018)

S. Luo, X. Li, W. Gao, H. Zhang, M. Luo, Sustain. Energy Fuels 4, 164 (2020)

F. Lü et al, Nano Energy 61, 420 (2019)