Hấp thụ CO2 dựa trên khung hữu cơ kim loại: Từ thiết kế vật liệu chính xác đến màng hiệu suất cao

Springer Science and Business Media LLC - Tập 14 - Trang 188-215 - 2020
Yujie Ban1, Meng Zhao1,2, Weishen Yang1
1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Một nền kinh tế carbon thấp kêu gọi các công nghệ thu giữ CO2. Các quá trình tách màng đại diện cho một phương pháp tiết kiệm năng lượng và thân thiện với môi trường so với quá trình chưng cất và hấp thụ dung môi. Các khung hữu cơ kim loại (MOFs), với tư cách là một loại vật liệu xốp mới, đang được phát triển với tốc độ nhanh chóng, điều này cung cấp nhiều cơ hội hơn cho việc thu hồi CO2 hiệu quả cao. Trong bài tổng quan này, chúng tôi trình bày một khung khái niệm từ thiết kế vật liệu và ứng dụng tách màng cho việc thu giữ CO2, và nhấn mạnh hai chủ đề quan trọng, cụ thể là (i) thiết kế và sửa đổi các vật liệu MOF ưa thích CO2 nhắm vào các đơn vị xây dựng thứ cấp, cấu trúc lỗ, topo và sự lai tạo và (ii) xây dựng các màng không có vết nứt thông qua sự phát triển epitaxy hóa học của các khối xây dựng hoạt động, lắp ghép bề mặt, lắp ghép các tấm nano siêu mỏng hai chiều và các chiến lược tích hợp ma trận hỗn hợp, điều này sẽ dẫn đến các hiệu suất màng triển vọng nhất cho việc thu giữ CO2, và được kỳ vọng sẽ vượt qua nút thắt của các hạn chế về tính thấm và chọn lọc.

Từ khóa

#thu hồi CO2 #khung hữu cơ kim loại #vật liệu xốp #tách màng #hiệu suất cao

Tài liệu tham khảo

Schuur E A G, McGuire A D, Schädel C, Grosse G, Harden J W, Hayes D J, Hugelius G, Koven C D, Kuhry P, Lawrence D M, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520(7546): 171–179 Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable & Sustainable Energy Reviews, 2018, 96: 502–525 Trickett C A, Helal A, Al Maythalony B A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2(8): 17045 Yu K, Mitch W A, Dai N. Nitrosamines and nitramines in amine-based carbon dioxide capture systems: Fundamentals, engineering implications, and knowledge gaps. Environmental Science & Technology, 2017, 51(20): 11522–11536 Huang X, Zhang J, Chen X. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 2003, 48(15): 1531–1534 Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67 Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science, 1999, 283(5405): 1148–1150 Mohamed E, Jaheon K, Nathaniel R, David V, Joseph W, Michael O K, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469–472 Millange F, Serre C, Férey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH) · {O2C-C6H4-CO2} · {HO2C-C6H4-CO2H}x. Chemical Communications, 2002, 8(8): 822–823 Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851 Reinsch H, van der Veen M A, Gil B, Marszalek B, Verbiest B, de Vos D, Stock N. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials, 2013, 25(1): 17–26 Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437 Fracaroli A M, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer J A, Yaghi O M. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 2014, 136(25): 8863–8866 Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C, Yang W. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 2015, 54(51): 15483–15487 Alezi D, Peedikakkal A M P, Weselinski L J, Guillerm V, Belmabkhout Y, Cairns A J, Chen Z, Wojtas L, Eddaoudi M. Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs. Journal of the American Chemical Society, 2015, 137(16): 5421–5430 Zeeshan M, Nozari V, Yagci M B, Isik T, Unal U, Ortalan V, Keskin S, Uzun A. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity. Journal of the American Chemical Society, 2018, 140(32): 10113–10116 Liu Y, Pan J H, Wang N, Steinbach F, Liu X, Caro J. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032 Kwon H T, Jeong H K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. Journal of the American Chemical Society, 2013, 135(29): 10763–10768 Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761 Guo A, Ban Y, Yang K, Yang W. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science, 2018, 562: 76–84 Li Y, Zhang X, Lan J, Xu P, Sun J. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorganic Chemistry, 2019, 58(20): 13917–13926 Abdoli Y, Razavian M, Fatemi S. Bimetallic Ni—Co-based metal—organic framework: An open metal site adsorbent for enhancing CO2 capture. Applied Organometallic Chemistry, 2019, 33(8): e5004 Queen W L, Brown C M, Britt D K, Zajdel P, Hudson M R, Yaghi O M. Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. Journal of Physical Chemistry C, 2011, 115(50): 24915–24919 Strauss I, Mundstock A, Hinrichs D, Himstedt R, Knebel A, Reinhardt C, Dorfs D, Caro J. The interaction of guest molecules with Co-MOF-74: A vis/NIR and raman approach. Angewandte Chemie International Edition, 2018, 57(25): 7434–7439 Wong-Ng W, Levin I, Kaduk J A, Espinal L, Wu H. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2:An in situ laboratory X-ray powder diffraction study. Journal of Alloys and Compounds, 2016, 656: 200–205 Wang Q M, Shen D, Bülow M, Lau M L, Deng S, Fitch F R, Lemcoff N O, Semanscin J. Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 2002, 55(2): 217–230 Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871 Park J, Kim H, Han S S, Jung Y. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Journal of Physical Chemistry Letters, 2012, 3(7): 826–829 Zhai Q G, Bu X, Mao C, Zhao X, Feng P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524–2527 Liao P Q, Zang W X, Zhang J P, Chen X M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6: 8697 Zhou D D, Chen P, Wang C, Wang S S, Du Y, Yan H, Ye Z M, He C T, Huang R K, Mo Z W, Huang N Y, Zhang J P. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18: 994–998 Zhang J P, Chen X M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. Journal of the American Chemical Society, 2008, 130(18): 6010–6017 Liao P Q, Chen H, Zhou D D, Liu S, He C, Rui Z, Ji H, Zhang J, Chen X M. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy & Environmental Science, 2015, 8(3): 1011–1016 Liao P Q, Zhu A X, Zhang W X, Zhang J P, Chen X M. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6: 6350 Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, (16): 1689–1699 Qi X L, Lin R B, Chen Q, Lin JB, Zhang J P, Chen X M. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2(11): 2214–2218 Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559 Wang X J, Li P Z, Chen Y, Zhang Q, Zhang H, Chan X X, Ganguly R, Li Y, Jiang J, Zhao Y. A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Scientific Report, 2013, 3: 1149 Lu Z, Meng F, Du L, Jiang W, Cao H, Duan J, Huang H, He H. A free tetrazolyl decorated metal-organic framework exhibiting high and selective CO2 adsorption. Inorganic Chemistry, 2018, 57(22): 14018–14022 Qin J S, Du D Y, Li W L, Zhang J P, Li S L, Su Z M, Wang X L, Xu Q, Shao K Z, Lan Y Q. N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science (Cambridge), 2012, 3(6): 2114–2118 Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z, Yang F, Zhou X, Li G, Wu H, Nijem N, Chabal Y J, Lai Z, Han Y, Shi Z, Feng S, Li J. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angewandte Chemie International Edition, 2012, 51(6): 1412–1415 Luebke R, Eubank J F, Cairns A J, Belmabkhout Y, Wojtas L, Eddaoudi M. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chemical Communications, 2012, 48(10): 1455–1457 An J, Fiorella R P, Geib S J, Rosi N L. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131(24): 8401–8403 An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377 An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. Journal of the American Chemical Society, 2010, 132(1): 38–39 Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131(11): 3875–3877 Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. Nanoporous carbohydrate metal-organic frameworks. Journal of the American Chemical Society, 2012, 134(1): 406–417 Seoane B, Castellanos S, Dikhtiarenko A, Kapteijn F, Gascon J. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307: 147–187 Ban Y, Peng Y, Zhang Y, Jin H, Jiao W, Guo A, Wang P, Li Y, Yang W. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219: 190–198 Li P Z, Wang X J, Tan R H D, Zhang Q, Zou R, Zhao Y. Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Advances, 2013, 3(36): 15566–15570 Chen C X, Qiu Q F, Cao C C, Pan M, Wang H P, Jiang J J, Wei Z W, Zhu K, Li G, Su C Y. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53(83): 11403–11406 Yan Y, Juríček M, Coudert F X, Vermeulen N A, Grunder S, Dailly A, Lewis W, Blake A J, Stoddart J F, Schröder M. Non-interpenetrated metal—organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: Synthesis, structure, and gas adsorption. Journal of the American Chemical Society, 2016, 138(10): 3371–3381 Yu M H, Zhang P, Feng R, Yao Z Q, Yu Y C, Hu T L, Bu X H. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(31): 26177–26183 Zhai Q G, Bu X, Mao C, Zhao X, Daemen L, Cheng Y, Ramirez-Cuesta A J, Feng P. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7(1): 13645 Zhai Q G, Bu X, Zhao X, Li D S, Feng P. Pore space partition in metal-organic frameworks. Accounts of Chemical Research, 2017, 50(2): 407–417 Zhao X, Bu X, Zhai Q G, Tran H, Feng P. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Journal of the American Chemical Society, 2015, 137(4): 1396–1399 Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer R A. Flexible metal-organic frameworks. Chemical Society Reviews, 2014, 43(16): 6062–6096 Bourrelly S, Llewellyn P L, Serre C, Millange F, Loiseau T, Férey G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127(39): 13519–13521 Coudert F X, Mellot-Draznieks C, Fuchs A H, Boutin A. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. Journal of the American Chemical Society, 2009, 131(32): 11329–11331 Lan Y Q, Jiang H L, Li S L, Xu Q. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Advanced Materials, 2011, 23(43): 5015–5020 Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang J S, Hong D Y, Kyu Hwang Y, Hwa Jhung S, Férey G. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24(14): 7245–7250 Zheng B, Yang Z, Bai J, Li Y, Li S. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chemical Communications, 2012, 48(56): 7025–7027 Mao Y, Chen D, Hu P, Guo Y, Ying Y, Ying W, Peng X. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15127–15132 Liu D, Zou D, Zhu H, Zhang J. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14(37): 1801454 Anderson R, Rodgers J, Argueta E, Biong A, Gomez-Gualdron D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337 Xue D X, Cairns A J, Belmabkhout Y, Wojtas L, Liu Y, Alkordi M H, Eddaoudi M. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 2013, 135(20): 7660–7667 Luebke R, Belmabkhout Y, Weseliński Ł J, Cairns A J, Alkordi M, Norton G, Wojtas Ł, Adil K, Eddaoudi M. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chemical Science (Cambridge), 2015, 6(7): 4095–4102 Zhong R, Yu X, Meng W, Liu J, Zhi C, Zou R. Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16493–16502 Lin Y, Lin H, Wang H, Suo Y, Li B, Kong C, Chen L. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2(35): 14658–14665 Kumar R, Raut D, Ramamurty U, Rao C N R. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angewandte Chemie International Edition, 2016, 55(27): 7857–7861 Ban Y, Li Y, Peng Y, Jin H, Jiao W, Liu X, Yang W. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane separation properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(36): 11402–11409 Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher M P, Long S, Wang Y, Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97–106 Li F, Wang D, Xing Q J, Zhou G, Liu S S, Li Y, Zheng L L, Ye P, Zou J P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2019, 243: 621–628 Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Advanced Materials, 2018, 30(3): 1705454 Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angewandte Chemie International Edition, 2018, 57(37): 12106–12110 Liao P Q, Huang N Y, Zhang W X, Zhang J P, Chen X M. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356(6343): 1193–1196 He C T, Ye Z M, Xu Y T, Zhou D D, Zhou H L, Chen D, Zhang J P, Chen X M. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science (Cambridge), 2017, 8(11): 7560–7565 Altintas C, Keskin S. Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2739–2750 Qiao Z, Peng C, Zhou J, Jiang J. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15904–15912 Watanabe T, Sholl D S. Accelerating applications of metal—organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 2012, 28(40): 14114–14128 Chung Y G, Gómez-Gualdrón D A, Li P, Leperi K T, Deria P, Zhang H, Vermeulen N A, Stoddart J F, You F, Hupp J T, Farha O K, Snurr R Q. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016, 2(10): e1600909 Guo H, Zhu G, Hewitt I J, Qiu S. “Twin copper source” growth of metal-organic gramework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647 Kang Z, Xue M, Fan L, Huang L, Guo L, Wei G, Chen B, Qiu S. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014, 7(12): 4053–4060 Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee Y M. Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47(2): 737–739 Zhou S, Wei Y, Zhuang L, Ding L X, Wang H. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 1948–1951 Huang A, Bux H, Steinbach F, Caro J. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010, 49(29): 4958–4961 Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564 McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641 Bétard A, Bux H, Henke S, Zacher D, Caro J, Fischer R A. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous and Mesoporous Materials, 2012, 150: 76–82 Fan S, Wu S, Liu J, Liu D. Fabrication of MIL-120 membranes supported by α-Al2O3 hollow ceramic fibers for H2 separation. RSC Advances, 2015, 5(67): 54757–54761 Bohrman J A, Carreon M A. Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48(42): 5130–5132 Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y S, Caro J. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chemistry of Materials, 2011, 23(8): 2262–2269 Dong X, Lin Y S. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49(12): 1196–1198 Li Y S, Bux H, Feldhoff A, Li G L, Yang W S, Caro J. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Advanced Materials, 2010, 22(30): 3322–3326 Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1): 36–40 Mao Y, Cao W, Li J, Liu Y, Ying Y, Sun L, Peng X. Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11711–11716 Li Y, Liu H, Wang H, Qiu J, Zhang X. GO-guided direct growth of highlyoriented metal organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141 Sun Y, Liu Y, Caro J, Guo X, Song C, Liu Y. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angewandte Chemie International Edition, 2018, 57(49): 16088–16093 Kwon H T, Jeong H K, Lee A S, An H S, Lee J S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311 Feng X, Ding X, Jiang D. Covalent organic frameworks. Chemical Society Reviews, 2012, 41(18): 6010–6022 Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. Journal of the American Chemical Society, 2016, 138(24): 7673–7680 Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011 Li Y, Yang W. Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 2008, 316(1): 3–17 Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001 Kwona H T, Jeong H K. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chemical Engineering Science, 2015, 124: 20–26 Yao J, Dong D, Li D, He L, Xu G, Wang H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47(9): 2559–2561 Kwon H T, Jeong H K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 2013, 49(37): 3854–3856 Lee M J, Kwon H T, Jeong H K. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161 Barankova E, Tan X, Villalobos L F, Litwiller E, Peinemann K V. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angewandte Chemie International Edition, 2017, 56(11): 2965–2968 Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75 Eum K, Rownaghi A, Choi D, Bhave R R, Jones C W, Nair S. Fluidic processing of high-performance ZIF-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. Advanced Functional Materials, 2016, 26(28): 5011–5018 Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359 Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231 Tzialla O, Veziri C, Papatryfon X, Beltsios K G, Labropoulos A, Iliev B, Adamova G, Schubert T J S, Kroon M C, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440 Bara J E, Hatakeyama E S, Gin D L, Noble R D. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies, 2008, 19(10): 1415–1420 Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010, 75(3): 229–242 Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal—organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chemical Society Reviews, 2015, 44(8): 2421–2454 Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena F X, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014, 14(1): 48–55 Fan H, Shi Q, Yan H, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8—PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582 Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3(9): 5014–5022 Anjum M W, Vermoortele F, Khan A L, Bueken B, De Vos D E, Vankelecom I F J. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201 Nik O G, Chen X Y, Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413: 48–61 Yang T, Xiao Y, Chung T S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011, 4(10): 4171–4180 Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524 Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53 Sabetghadam A, Seoane B, Keskin D, Duim N, Rodenas T, Shahid S, Sorribas S, Guillouzer C L, Clet G, Tellez C, Daturi M, Coronas J, Kapteijn F, Gascon J. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016, 26(18): 3154–3163 Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 127(14): 4333–4337 Bae T H, Lee J S, Qiu W, Koros W J, Jones C W, Nair S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angewandte Chemie International Edition, 2010, 49(51): 9863–9866 Ordonez M J C, Balkus K J Jr, Ferraris J P, Musselman I H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1): 28–37 Yang T, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38(1): 229–239 Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165 Liu X, Jin H, Li Y, Bux H, Hu Z, Ban Y, Yang W. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. Journal of Membrane Science, 2013, 428: 498–506 Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 2015, 137(44): 14129–14135