Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction

Catalysis Science and Technology - Tập 4 Số 7 - Trang 2023-2030
Bhaskar R. Sathe1,2,3,4,5, Xiaoxin Zou6,1,2,4,5, Tewodros Asefa6,1,2,4,5
1Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey, 08854, USA
2Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway NJ, 08854, USA
3Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
4Piscataway, USA
5Rutgers, The State University of New Jersey
6Department of Chemical and Biochemical Engineering

Tóm tắt

We report a facile and inexpensive wet synthetic method to electrocatalytically active, B-substituted graphene (B-SuG) by controlled substitution of the C atoms of graphene with B atoms using BH3-THF. The resulting material is shown to serve as an efficient metal-free electrocatalyst for hydrogen evolution reaction (HER).

Từ khóa


Tài liệu tham khảo

Xiang, 2011, Nanoscale, 3, 3670, 10.1039/c1nr10610d

Yu, 2012, Angew. Chem., Int. Ed., 51, 897, 10.1002/anie.201105786

Vrubel, 2013, Chem. Commun., 49, 8985, 10.1039/c3cc45416a

Tollefson, 2013, Nature, 464, 1262, 10.1038/4641262a

Subbaraman, 2011, Science, 1256, 10.1126/science.1211934

Thoi, 2013, Chem. Soc. Rev., 42, 2388, 10.1039/C2CS35272A

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Xiang, 2012, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Sathe, 2013, RSC Adv., 3, 5361, 10.1039/c3ra00105a

Zhu, 2013, Nanoscale, 5, 1753, 10.1039/c2nr33839d

Chen, 2010, Chem. Soc. Rev., 39, 3157, 10.1039/b923596e

Kim, 2007, Adv. Mater., 19, 3214, 10.1002/adma.200700665

Zhang, 2013, Nanoscale, 5, 2556, 10.1039/c3nr34009k

Bai, 2011, Adv. Mater., 23, 1089, 10.1002/adma.201003753

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Zhang, 2013, Catal. Sci. Technol., 3, 1815, 10.1039/c3cy00098b

Sahoo, 2012, Adv. Mater., 24, 4203, 10.1002/adma.201104971

Xiang, 2013, J. Phys. Chem. Lett., 4, 753, 10.1021/jz302048d

Tang, 2013, Nanoscale, 5, 4541, 10.1039/c3nr33218g

Tu, 2013, Adv. Funct. Mater., 23, 4996, 10.1002/adfm.201203547

Song, 2012, Adv. Mater., 24, 4878, 10.1002/adma.201201792

Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u

Yang, 2012, Adv. Funct. Mater., 22, 3634, 10.1002/adfm.201200186

Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948

Jin, 2010, J. Am. Chem. Soc., 132, 15246, 10.1021/ja105428d

Dou, 2012, Angew. Chem., Int. Ed., 51, 12206, 10.1002/anie.201206699

Han, 2013, ACS Nano, 7, 19, 10.1021/nn3034309

Zheng, 2013, Angew. Chem., Int. Ed., 52, 3110, 10.1002/anie.201209548

Staubitz, 2010, Chem. Rev., 110, 4023, 10.1021/cr100105a

Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017

Sathe, 2010, Chem. Commun., 46, 5671, 10.1039/c0cc01532f

Sheng, 2011, ACS Nano, 5, 4350, 10.1021/nn103584t

Panchalkarla, 2007, ACS Nano, 1, 494, 10.1021/nn700230n

Panchakarla, 2009, Adv. Mater., 21, 4726, 10.1002/adma.200901285

Wu, 2011, ACS Nano, 7, 5463, 10.1021/nn2006249

Eckmann, 2012, Nano Lett., 12, 3925, 10.1021/nl300901a

Kim, 2012, ACS Nano, 6, 6293, 10.1021/nn301728j

Das, 2008, Nat. Nanotechnol., 3, 210, 10.1038/nnano.2008.67

Yang, 2005, Nano Lett., 5, 2465, 10.1021/nl051779j

Cox, 2013, Energy Environ. Sci., 6, 532, 10.1039/C2EE23932A

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b