Metal bioremediation through growing cells

Environment International - Tập 30 Số 2 - Trang 261-278 - 2004
Anushree Malik1
1Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahuja, 1999, Sorption and desorption of cobalt by Oscillitoria anguistissima, Curr. Microbiol., 39, 49, 10.1007/PL00006826

Aksu, 2000, The use of molasses in copper(II) containing wastewaters: effect on growth and copper(II) bioaccumulation properties of Kluveromyces marxianus, Process Biochem., 36, 451, 10.1016/S0032-9592(00)00234-X

Avery, 1993, Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions, Appl. Environ. Microbiol., 59, 2851, 10.1128/AEM.59.9.2851-2856.1993

Bae, 2000, Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins, Biotechnol. Bioeng., 70, 518, 10.1002/1097-0290(20001205)70:5<518::AID-BIT6>3.0.CO;2-5

Baillet, 1997, Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass, Environ. Technol., 18, 631, 10.1080/09593331808616581

Basnakova, 1977, Microbially enhanced chemisorption of nickel into biologically synthesized hydrogen uranyl phosphate: a novel system for the removal and recovery of metals from aqueous solutions, Biotechnol. Bioeng., 54, 319, 10.1002/(SICI)1097-0290(19970520)54:4<319::AID-BIT4>3.0.CO;2-N

Basnakova, 1998, Identification of the nickel uranyl phosphate deposits on Citrobacter sp. cells by electron microscopy with electron probe X-ray microanalysis and by proton-induced X-ray emission analysis, Environ. Sci. Technol., 32, 760, 10.1021/es9705553

Baudet, 1988, Adsorption and nickel uptake in Methanothrix concilii, Arch. Microbiol., 150, 338, 10.1007/BF00408304

Bonthrone, 1996, Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymic mechanism, Nat. Biotechnol., 14, 635, 10.1038/nbt0596-635

Boyer, 1998, Copper ion removal by Thiobacillus ferrooxidans biomass, Biotechnol. Lett., 20, 187, 10.1023/A:1005345011862

Bradshaw, 1998, Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration, Infect. Immun., 66, 4729, 10.1128/IAI.66.10.4729-4732.1998

Brady, 1994, Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae, Biotechnol. Bioeng., 44, 297, 10.1002/bit.260440307

Brady, 1994, Bioaccumulation of metal cations by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 41, 149, 10.1007/BF00166098

Brandolini, 2002, Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine, World J. Microbiol. Biotechnol., 18, 499, 10.1023/A:1016306813502

Brierley, 1990, Bioremediation of metal-contaminated surface and groundwater, Geomicrobiol. J., 8, 201, 10.1080/01490459009377894

Chan, 1991, Microalgae as bioabsorbents for treating mixture of electroplating and sewage effluent, Biomed. Environ. Sci., 4, 250

Chang, 1997, Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21, Water Res., 31, 1651, 10.1016/S0043-1354(97)00008-0

Chen, 1997, Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg(2+)-contaminated environments, Appl. Environ. Microbiol., 63, 2442, 10.1128/AEM.63.6.2442-2445.1997

Choudhury, 2002, Zinc accumulative properties of Pseudomonas putida strain S4, Asian J. Microbiol. Biotechnol. Environ. Sci., 4, 197

Corder, 1994, Biosorption of nickel in complex aqueous waste streams by cyanobacteria, Appl. Biochem. Biotechnol., 45/46, 847, 10.1007/BF02941854

Costa, 2001, Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis, Braz. J. Microbiol., 32, 1, 10.1590/S1517-83822001000100001

Costley, 1999, Effect of disc rotational speed on heavy metal accumulation by rotating biological contactor (RBC) biofilms, Lett. Appl. Microbiol., 29, 401, 10.1046/j.1472-765X.1999.00661.x

Costley, 2000, Effect of flow rate on heavy metal accumulation by rotating biological contactor (RBC) biofilms, J. Ind. Microbiol. Biotech., 24, 244, 10.1038/sj.jim.2900812

Costley, 2001, Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor, Water Res., 15, 3715, 10.1016/S0043-1354(01)00072-0

Diels, 1995, The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics, J. Membr. Sci., 100, 249, 10.1016/0376-7388(94)00253-U

Diels, 1999, Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria, 607

Diels, 2001, Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria, Process Metall., 11B, 317

Diels, 2001, Bioremediation of heavy metal contaminated soils with a biometal sludge reactor (BMSR), Process Metall., 11B, 479

Donmez, 1999, The effect of copper(II) ions on growth and bioaccumulation properties of some yeasts, Process Biochem., 35, 135, 10.1016/S0032-9592(99)00044-8

Donmez, 2001, Bioaccumulation of copper(II) and nickel(II) by the non-adapted and adapted growing Candida spp., Water Res., 35, 1425, 10.1016/S0043-1354(00)00394-8

Duncan, 1995, The use of immobilized yeast cells for heavy metal removal from wastewaters, 189

Dursun, 2003, Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger, Process. Biochem., 38, 1647, 10.1016/S0032-9592(02)00075-4

Ewan, 1996, Increased inorganic mercury in spinal motor neurons following chelating agents, Neurotoxicology, 17, 343

Fourest, 1994, Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation, FEMS Microbiol. Rev., 14, 325, 10.1111/j.1574-6976.1994.tb00106.x

Gadd, 1988, Accumulation of metal by microorganisms and algae, vol. 4, 401

Garnham, 1992, Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina, Appl. Microbiol. Biotechnol., 37, 270, 10.1007/BF00178183

Gekeler, 1988, Algae sequester heavy metals via synthesis of phytochelatin complex, Arch. Microbiol., 50, 197, 10.1007/BF00425162

Ghozlan, 1999, Bioaccumulation of nickel, cobalt, and cadmium by free and immobilized cells of Pseudomonas spp., Fresenius Environ. Bull., 8, 428

Gomez, 2001, Biosorption of nickel, cobalt and zinc by Serratia marcescens strain 7 and Enterobacter agglomerans strain 16, Process Metall., 11B, 247

Grabas, 2000, Biostimulation of nickel sorption on carbon carriers, Inz. Ochr. Srodowiska, 3, 333

Gusek, 2003, Design challenges for large-scale sulfate reducing bioreactors

Haq, 1999, Cadmium resistant Enterobacter cloacae and Klebsiella sp. isolated from industrial effluents and their possible role in cadmium detoxification, World J. Microbiol. Biotechnol., 15, 283, 10.1023/A:1008986727896

Hard, 1997, Bioremediation of acide mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria, Microbiol. Res., 152, 65, 10.1016/S0944-5013(97)80025-0

Hartmeier, 1995, Biosorption of heavy metals by Bacillus amyloliquefaciens: contribution of cell walls, Med. Fac. Landbouww Univ. Gent., 60, 2585

Hassen, 1998, Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thrungiensis, Bioresour. Technol., 65, 73, 10.1016/S0960-8524(98)00011-X

Hernandez, 1998, Metal accumulation and vanadium-induced multidrug resisitance by environmental isolates of Escherichia hermannii and Enterobacter cloacae, Appl. Environ. Microbiol., 64, 4317, 10.1128/AEM.64.11.4317-4320.1998

Hong, 2000, Molecular design of novel metal-binding oligomeric human metallothioneins, Appl. Microbiol. Biotechnol., 54, 84, 10.1007/s002530000360

Huang, 1990, The removal of copper from dilute aqueous solutions by Saccharomyces cerevisiae, Water Res., 24, 433, 10.1016/0043-1354(90)90225-U

Ibrahim, 2001, Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta, Braz. Arch. Biol. Technol., 44, 223, 10.1590/S1516-89132001000300001

Kaplan, 1995, Cadmium toxicity and resistance in Chlorella spp., Plant Sci., 109, 129, 10.1016/0168-9452(95)04165-Q

Kapoor, 1999, Removal of heavy metals using the fungus Aspergillus niger, Bioresour. Technol., 70, 95, 10.1016/S0960-8524(98)00192-8

Karna, 1996, Bioaccumulation and biosorption of Co2+ by Neurospora crassa, Biotechnol. Lett., 18, 1205, 10.1007/BF00128593

Kazy, 2002, Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding, World J. Microbiol. Biotechnol., 18, 583, 10.1023/A:1016354713289

Kolmert, 2001, Remediation of acidic waste waters using immobilized, acidophilic sulfate-reducing bacteria, J. Chem. Technol. Biotechnol., 76, 836, 10.1002/jctb.453

Krauter, 1996, Removal of Cr(VI) from ground water by Saccharomyces cerevisiae, Biodegradation, 7, 277, 10.1007/BF00115741

Krishnaswamy, 2000, Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation, Appl. Environ. Microbiol., 66, 5383, 10.1128/AEM.66.12.5383-5386.2000

Kuroda, 2002, Cell surface-engineered yeast with ability to bind, and self-aggregate in response to copper ion, Appl. Microbiol. Biotechnol., 59, 259

Kutsal, 1995, Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics, Chem. Eng. J., 60, 181

Langley, 1999, Effect of O-side-chain-lipopolysaccharide chemistry on metal binding, Appl. Environ. Microbiol., 65, 489, 10.1128/AEM.65.2.489-498.1999

Lau, 1988, Metal removal studied by a laboratory scale immobilized microalgal reactor, J. Environ. Sci. (China), 10, 474

Lee, 2003, Field demonstration and numerical evaluation of in situ bioremediation of metals-contaminated groundwater

Levinskaite, 2000, The effect of nickel on soil fungi from the genus Penicillium, Ekologia, 3, 3

Lopez, 2000, Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39, J. Ind. Microbiol. Biotechnol., 24, 146, 10.1038/sj.jim.2900793

Luef, 1991, Biosorption of zinc by fungal mycelial wastes, Appl. Microbiol. Biotechnol., 34, 688, 10.1007/BF00167924

Macaskie, 1989, Microbial metabolism, desolubilisation and deposition of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes, Adv. Biotechnol. Process., 12, 159

Magnin, 1998, Enhancement, by electrochemical substrate regeneration, of the production of a biomass (Thiobacillus ferrooxidans DSM 583) for a biological metal removing process, Can. J. Chem. Eng., 76, 978, 10.1002/cjce.5450760602

Magyarosy, 2002, Nickel accumulation and nickel oxalate precipitation by Aspergillus niger, Appl. Microbiol. Biotechnol., 59, 382

Maier, 1990, Nickel accumulation and storage in Bradyrhizobium japonicum, Appl. Environ. Microbiol., 56, 1905, 10.1128/AEM.56.6.1905-1911.1990

Malik A. Studies on biodesulfurization of coal. PhD thesis, India: Indian Institute of Technology Delhi; 2000.

Malik, 2003, Intergeneric coaggregations among Oligotropha carboxidovorans and Acinetobacter species present in activated sludge, FEMS Microbiol. Lett., 224, 23, 10.1016/S0378-1097(03)00391-4

Malik, 2003, Pair-dependent coaggregation behavior of non-flocculating sludge bacteria, Biotechnol. Lett., 25, 981, 10.1023/A:1024009511113

Malik, 2001, Biodesulfurization of coal: effect of pulse feeding and leachate recycle, Enzyme Microb. Technol., 28, 49, 10.1016/S0141-0229(00)00283-0

Malik, 2002, Coaggregation of Microbacterium esteraromaticum S51 with other strains of non-flocculating sludge bacteria, IWA's Water Environ. Manage. Ser., 737

Malik, 2003, Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge, J. Biosci. Bioeng., 91, 10, 10.1016/S1389-1723(03)90090-9

Marchand, 2000, Remediation of acid rock drainage by inducing biological iron reduction, 1201

Marchand, 2002, Influence of heterotrophic microbial growth on biological oxidation of pyrite, Environ. Sci. Technol., 36, 5483, 10.1021/es0255251

Massaccesi, 2002, Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina), World J. Microbiol. Biotechnol., 18, 817, 10.1023/A:1021282718440

Matsunaga, 1999, Screening of microalgae for bioremediation of cadmium polluted seawater, J. Biotechnol., 70, 33, 10.1016/S0168-1656(99)00055-3

Mehta, 2001, Characterization and optimization of Ni and Cu sorption from aquatic solution by Chlorella vulgaris, Ecol. Eng., 18, 1, 10.1016/S0925-8574(00)00174-9

MEND Report 3.14.1., 1996. Review of passive systems for treatment of acid mine drainage (http://www.nrcan.gc.ca/mms/canmet-mtb/mmsl-lmsm/mend/reports/3141es_e.htm).

Mobley, 1995, Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions, Mol. Microbiol., 16, 97, 10.1111/j.1365-2958.1995.tb02395.x

Mogollon, 1998, Biosorption of nickel using filamentous fungi, Appl. Biochem. Biotechnol., 70–72, 593, 10.1007/BF02920171

Moore, 1990, 178

Nuzhat, 2001, Resistance and accumulation of heavy metals by indigenous bacteria: bioremediation, 81

Oh, 2002, Involvement of lipopolysaccharide of Bradyrhizobium japonicum in metal binding, J. Microbiol. Biotechnol., 12, 296

Patil, 1999, Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes, Biotechnol. Lett., 21, 913, 10.1023/A:1005550707798

Patil, 2001, Biological detoxification of nickel-cyanide from industrial effluents, Process Metall., 11B, 391

Perez-Rama, 2001, Class III metallothioneins in response to cadmium toxicity in the marine microalga Tetraselmis suecica (Kylin), Butch. Environ. Toxicol. Chem., 20, 2061, 10.1897/1551-5028(2001)020<2061:CIMIRT>2.0.CO;2

Perez-Rama, 2002, Cadmium removal by living cells of the marine microalgae Tetraselmis suecica, Bioresour. Technol., 84, 265, 10.1016/S0960-8524(02)00045-7

Pumpel, 2001, Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter, Hydrometallurgy, 383, 10.1016/S0304-386X(00)00168-7

Rai, 1981, Phycology and heavy metal pollution, Biol. Rev., 56, 99, 10.1111/j.1469-185X.1981.tb00345.x

Ramteke, 2000, Biosorption of nickel(II) by Pseudomonas stutzeri, J. Environ. Biol., 21, 219

Roane, 1999, Lead resistance in two bacterial isolates from heavy metal contaminated soils, Microb. Ecol., 37, 218, 10.1007/s002489900145

Roane, 2000, Microbial responses to environmentally toxic cadmium, Microb. Ecol., 38, 358, 10.1007/s002489901001

Roane, 2001, Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil, Appl. Environ. Microbiol., 67, 3208, 10.1128/AEM.67.7.3208-3215.2001

Robinson, 2001, Microbial metallothioneins, Adv. Microb. Physiol., 44, 183, 10.1016/S0065-2911(01)44014-8

Sag, 2000, Biosorption of lead(II), nickel(II), and copper(II) on Rhizopus arrhizus from binary and ternary metal mixtures, Sep. Sci. Technol., 35, 2601, 10.1081/SS-100102358

Sandau, 1996, Heavy metal sorption by microalgae, Acta Biotechnol., 16, 227, 10.1002/abio.370160402

Sar, 1998, Nickel uptake by Pseudomonas aeruginosa: role of modifying factors, Curr. Microbiol., 37, 306, 10.1007/s002849900383

Sar, 2001, Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature, Lett. Appl. Microbiol., 32, 257, 10.1046/j.1472-765X.2001.00878.x

Saunders, 2001, In situ bioremediation of metals-contaminated groundwater using sulfate-reducing bacteria: a case history, vol. 9, 105

Savvaidis, 1992, Differential pulse polarography: a method of directly measuring uptake of metal ions by live bacteria without separation of biomass and medium, FEMS Microbiol. Lett., 92, 181, 10.1111/j.1574-6968.1992.tb05256.x

Saxena, 2001, Removal of copper by Pseudomonas putida strain S4 isolated from copper mines, Indian J. Exp. Biol., 39, 590

Scott, 1995, Biofilm covered granular activated carbon for decontamination of streams containing heavy metals and organic chemicals, Miner. Eng., 8, 221, 10.1016/0892-6875(94)00115-S

Sen, 1999, Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage, vol. 9A, 709

Senthilkumar, 2000, Biosorption of toxic heavy metals from aqueous solutions, Bioresour. Technol., 75, 163, 10.1016/S0960-8524(00)00021-3

Sharma, 2000, Zinc uptake by an isolated fungus, vol. 2, 113

Sharma, 2002, Zinc uptake by a fungal biomass isolated from industrial wastewaters, ASCE: Practice Period Toxic Hazard Radioact. Waste Manage., 6, 256, 10.1061/(ASCE)1090-025X(2002)6:4(256)

Sharma, 2003, Biological removal of zinc from wastewater using Aspergillus spp., Eur. J. Miner. Process. Environ. Protect., 3, 1

Silver, 2001, Toxic metal resistances: molecular biology and the potential for bioremediation, 33

Singh, 1994, Adaptation of a strain of Spirulina platensis to grow in cobalt- and iodine-enriched media, J. Appl. Bacteriol., 76, 149, 10.1111/j.1365-2672.1994.tb01610.x

Singh, 2001, Ni(II) and Cr(VI) sorption kinetics by Microcystis in single and multimetallic system, Process Biochem., 36, 1205, 10.1016/S0032-9592(01)00160-1

Soares, 2002, Use of Sacchromyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain, Biotechnol. Lett., 24, 663, 10.1023/A:1015062925570

Sousa, 1996, Enhanced metalloadsorption of bacterial cells displaying poly-His peptides, Nat. Biotechnol., 14, 1017, 10.1038/nbt0896-1017

Stoll, 1996, Enhanced heavy metal removal from wastewater by viable, glucose pretreated Sacchromyces cerevisiae cells, Biotechnol. Lett., 18, 1209, 10.1007/BF00128594

Sugawara, 1997, Isolation and characterization of nickel-accumulating yeasts, Appl. Microbiol. Biotechnol., 48, 373, 10.1007/s002530051065

Suh, 1998, Process of Pb2+ accumulation in Saccharomyces cerevisiae, Biotechnol. Lett., 20, 153, 10.1023/A:1005376424157

Tabak, 2003, Advances in biotreatment of acid mine drainage and biorecovery of metals

Tam, 2001, Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption, Environ. Pollut., 114, 85, 10.1016/S0269-7491(00)00202-5

Torres, 1998, Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (cyanophycae), Microbios, 96, 141

Tsezos, 1995, A systematic study on equilibrium and kinetics of biosorptive accumulation: the case of Ag and Ni, Int. Biodeterior. Biodegrad., 35, 129, 10.1016/0964-8305(95)00049-B

Tsezos, 1997, Biosorption sites of selected metals using electron microscopy, Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 118A, 481, 10.1016/S0300-9629(97)00009-1

United Keno Hill Mine Case Study. Design of a constructed wetland to treat mine drainage at UKHM http://technology.infomine.com/enviromine/wetlands/cw_cases.htm; 1995.

USEPA Mine Waste Technology Program. Activity III, Project 16: integrated passive biological treatment process demonstration. Annual Report http://www.epa.gov/ORD/NRMRL/std/mtb/mwtp2001/index.html; 2001.

USEPA Mine Waste Technology Program. Activity III, Project 12: sulfate-reducing bacteria reactive wall demonstration. Final Report http://www.epa.gov/ORD/NRMRL/std/mtb/mtbdocs/actiiiproj12.pdf; 2002.

Valentine, 1996, Biosorption of cadmium, cobalt, nickel, and strontium by a Bacillus simplex strain isolated from the vadose zone, J. Ind. Microbiol., 16, 189, 10.1007/BF01570003

Valls, 2002, Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution, FEMS Microbiol. Rev., 26, 327, 10.1111/j.1574-6976.2002.tb00618.x

Veglio, 1997, Biosorption of toxic heavy metals: an equilibrium study using free cells of Arthrobacter spp., Process Biochem., 32, 99, 10.1016/S0032-9592(96)00047-7

Volesky, 1994, Advances in biosorption of metals: selection of biomass types, FEMS Microbiol. Rev., 14, 291, 10.1111/j.1574-6976.1994.tb00102.x

Volesky, 1995, Biosorption of heavy metals, Biotechnol. Prog., 11, 235, 10.1021/bp00033a001

Volesky, 1995, Biosorption of heavy metals by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 42, 797, 10.1007/BF00171964

Volesky, 1992, Cadmium biosorption by Saccharomyces cerevisiae, Biotechnol. Bioeng., 41, 826, 10.1002/bit.260410809

White, 1986, Uptake and cellular distribution of copper, cobalt and cadmium in strains of saccharomyces cerevisiae cultured on elevated concentrations of these metals, FEMS Microbiol. Lett., 38, 277, 10.1111/j.1574-6968.1986.tb01738.x

White, 1998, An integrated microbial process for the bioremediation of soil contaminated with toxic metals, Nat. Biotechnol., 16, 572, 10.1038/nbt0698-572

Wilde, 1993, Bioremoval of heavy metals by the use of microalgae, Biotechnol. Adv., 11, 781, 10.1016/0734-9750(93)90003-6

Wong, 1997, Removal and recovery of nickel ion (Ni2+) from aqueous solution by magnetite-immobilized cells of Enterobacter sp. 4-2, Enzyme Microb. Technol., 20, 116, 10.1016/S0141-0229(96)00082-8

Wong, 2000, Nickel biosorption by two Chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate), Bioresour. Technol., 73, 133, 10.1016/S0960-8524(99)00175-3

Yazgan, 1994, Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus, Biotechnol. Lett., 16, 871, 10.1007/BF00133970

Yu, 2000, Adsorption of Ni2+ from aqueous solutions by pretreated biomass of marine macroalga Durvillaea potatorum, Sep. Sci. Technol., 35, 689, 10.1081/SS-100100184

Yusef, 1997, Bioaccumulation of metal cations by free and immobilized cells of Kluyveromyces marxianus, Adv. Food Sci., 19, 120

Zaluski, 2001, Field performance of engineered SRB reactors for removing heavy metals