Metal-Organic Frameworks for Chemiresistive Sensors

Chem - Tập 5 - Trang 1938-1963 - 2019
Won-Tae Koo1,2, Ji-Soo Jang1,2, Il-Doo Kim1,2
1Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
2Advanced Nanosensor Research Center, KI Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Tài liệu tham khảo

Kim, 2017, Innovative nanosensor for disease diagnosis, Acc. Chem. Res., 50, 1587, 10.1021/acs.accounts.7b00047 Loutfi, 2015, Electronic noses for food quality: a review, J. Food Eng., 144, 103, 10.1016/j.jfoodeng.2014.07.019 Brown, 1994, Concentrations of volatile organic compounds in indoor air–a review, Indoor Air, 4, 123, 10.1111/j.1600-0668.1994.t01-2-00007.x Kostiainen, 1995, Volatile organic compounds in the indoor air of normal and sick houses, Atoms. Environ., 29, 693, 10.1016/1352-2310(94)00309-9 Potyrailo, 2016, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet, Chem. Rev., 116, 11877, 10.1021/acs.chemrev.6b00187 Kim, 2013, Advances and new directions in gas-sensing devices, Acta Mater., 61, 974, 10.1016/j.actamat.2012.10.041 Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 10.1126/science.1230444 Li, 2009, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j Morris, 2008, Gas storage in nanoporous materials, Angew. Chem. Int. Ed. Engl., 47, 4966, 10.1002/anie.200703934 Wang, 2017, Metal-organic frameworks for energy applications, Chem, 2, 52, 10.1016/j.chempr.2016.12.002 Lee, 2009, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f Diercks, 2018, The role of reticular chemistry in the design of CO2 reduction catalysts, Nat. Mater., 17, 301, 10.1038/s41563-018-0033-5 Kreno, 2012, Metal–organic framework materials as chemical sensors, Chem. Rev., 112, 1105, 10.1021/cr200324t Hu, 2014, Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev., 43, 5815, 10.1039/C4CS00010B Kreno, 2010, Metal–organic framework thin film for enhanced localized surface plasmon resonance gas sensing, Anal. Chem., 82, 8042, 10.1021/ac102127p Lu, 2010, Metal–organic frameworks as sensors: A ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases, J. Am. Chem. Soc., 132, 7832, 10.1021/ja101415b Prestipino, 2006, Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates, Chem. Mater., 18, 1337, 10.1021/cm052191g Dang, 2017, Nanomaterials derived from metal–organic frameworks, Nat. Rev. Mater., 3, 17075, 10.1038/natrevmats.2017.75 Stassen, 2017, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors, Chem. Soc. Rev., 46, 3185, 10.1039/C7CS00122C Campbell, 2017, Metal–organic frameworks as active materials in electronic sensor devices, Sensors, 17, 1108, 10.3390/s17051108 Zhao, 2018, Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices, Coord. Chem. Rev., 377, 44, 10.1016/j.ccr.2018.08.023 Chidambaram, 2018, Electronic metal–organic framework sensors, Inorg. Chem. Front., 5, 979, 10.1039/C7QI00815E Fang, 2018, Metal–organic framework-based sensors for environmental contaminant sensing, Nanomicro Lett., 10, 64 Campbell, 2015, Cu3 (hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing, Angew. Chem. Int. Ed., 54, 4349, 10.1002/anie.201411854 Aubrey, 2018, Electron delocalization and charge mobility as a function of reduction in a metal–organic framework, Nat. Mater., 17, 625, 10.1038/s41563-018-0098-1 Rubio-Giménez, 2018, Origin of the chemiresistive response of ultrathin films of conductive metal–organic frameworks, Angew. Chem., Int. Ed., 57, 15086, 10.1002/anie.201808242 Schroeder, 2019, Carbon nanotube chemical sensors, Chem. Rev., 119, 99, 10.1021/acs.chemrev.8b00340 Liu, 2012, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., 41, 2283, 10.1039/C1CS15270J Anichini, 2018, Chemical sensing with 2D materials, Chem. Soc. Rev., 47, 4860, 10.1039/C8CS00417J Franke, 2006, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, Small, 2, 36, 10.1002/smll.200500261 Ammu, 2012, Flexible, all-organic chemiresistor for detecting chemically aggressive vapors, J. Am. Chem. Soc., 134, 4553, 10.1021/ja300420t Torsi, 2013, Organic field-effect transistor sensors: a tutorial review, Chem. Soc. Rev., 42, 8612, 10.1039/c3cs60127g Lee, 2009, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B, 140, 319, 10.1016/j.snb.2009.04.026 Swager, 2018, Sensor technologies empowered by materials and molecular innovations, Angew. Chem. Int. Ed. Engl., 57, 4248, 10.1002/anie.201711611 Czaja, 2009, Industrial applications of metal–organic frameworks, Chem. Soc. Rev., 38, 1284, 10.1039/b804680h Chen, 2014, Zeolitic imidazolate framework as formaldehyde gas sensor, Inorg. Chem., 53, 5411, 10.1021/ic500474j Wargocki, 1999, Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads, Indoor. Air, 9, 165, 10.1111/j.1600-0668.1999.t01-1-00003.x Yang, 2012, Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye, J. Mater. Chem., 22, 21849, 10.1039/c2jm35602c Chen, 2014, Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material, ACS Appl. Mater. Interfaces, 6, 22871, 10.1021/am5071317 DMello, 2019, An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases, Chem. Commun., 55, 349, 10.1039/C8CC06875E Long, 2012, Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations, Chem. Commun., 48, 11656, 10.1039/c2cc34620f Sun, 2016, Electrically conductive porous metal–organic frameworks, Angew. Chem. Int. Ed. Engl., 55, 3566, 10.1002/anie.201506219 Travlou, 2015, Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors, J. Mater. Chem. A, 3, 11417, 10.1039/C5TA01738F Feng, 2018, Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance, Nat. Energy, 3, 30, 10.1038/s41560-017-0044-5 Sheberla, 2017, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mat., 16, 220, 10.1038/nmat4766 Talin, 2014, Tunable electrical conductivity in metal-organic framework thin-film devices, Science, 343, 66, 10.1126/science.1246738 Campbell, 2015, Chemiresistive sensor arrays from conductive 2D metal–organic frameworks, J. Am. Chem. Soc., 137, 13780, 10.1021/jacs.5b09600 Smith, 2016, Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films, Chem. Mater., 28, 5264, 10.1021/acs.chemmater.6b02528 Yao, 2017, Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing, Angew. Chem. Int. Ed. Engl., 56, 16510, 10.1002/anie.201709558 Ko, 2017, Drawing sensors with ball-milled blends of metal–organic frameworks and graphite, Sensors, 17, 2192, 10.3390/s17102192 Smith, 2017, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases, J. Am. Chem. Soc., 139, 16759, 10.1021/jacs.7b08840 Pedersen, 2018, Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry, Nat. Chem., 10, 1056, 10.1038/s41557-018-0107-7 Kung, 2018, Inorganic “conductive glass” approach to rendering mesoporous metal–organic frameworks electronically conductive and chemically responsive, ACS Appl. Mater. Interfaces, 10, 30532, 10.1021/acsami.8b08270 Li, 2018, Recent advances in gas storage and separation using metal–organic frameworks, Mater. Today, 21, 108, 10.1016/j.mattod.2017.07.006 Han, 2018, Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework, Nat. Mater., 17, 691, 10.1038/s41563-018-0104-7 Liu, 2018, Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations, Nat. Mater., 17, 283, 10.1038/s41563-017-0013-1 Penner, 2017, A nose for hydrogen gas: fast, sensitive H2 sensors using electrodeposited nanomaterials, Acc. Chem. Res., 50, 1902, 10.1021/acs.accounts.7b00163 Yang, 2010, Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires, ACS Nano, 4, 5233, 10.1021/nn101475c Favier, 2001, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science, 293, 2227, 10.1126/science.1063189 Nyberg, 1984, Adsorption and reaction of water, oxygen, and hydrogen on Pd (100): identification of adsorbed hydroxyl and implications for the catalytic H2–O2 reaction, J. Chem. Phys., 80, 3463, 10.1063/1.447102 Koo, 2017, Accelerating palladium nanowire H2 sensors using engineered nanofiltration, ACS Nano, 11, 9276, 10.1021/acsnano.7b04529 Menke, 2006, Lithographically patterned nanowire electrodeposition, Nat. Mater., 5, 914, 10.1038/nmat1759 Sun, 2012, Metal oxide nanostructures and their gas sensing properties: a review, Sensors, 12, 2610, 10.3390/s120302610 Yao, 2016, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance, Adv. Mater., 28, 5229, 10.1002/adma.201506457 Tian, 2016, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor, ACS Sens., 1, 243, 10.1021/acssensors.5b00236 DMello, 2018, Assembly of ZIF-67 metal–organic framework over tin oxide nanoparticles for synergistic chemiresistive CO2 gas sensing, Chemistry, 24, 9220, 10.1002/chem.201800847 Drobek, 2016, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity, ACS Appl. Mater. Interfaces, 8, 8323, 10.1021/acsami.5b12062 Zhou, 2018, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays, Sens. Actuators B Chem., 258, 1099, 10.1016/j.snb.2017.12.024 Weber, 2018, High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal–organic framework membranes, ACS Appl. Mater. Interfaces, 10, 34765, 10.1021/acsami.8b12569 Rodenas, 2015, Metal–organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater., 14, 48, 10.1038/nmat4113 Xia, 2015, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci., 8, 1837, 10.1039/C5EE00762C Li, 2018, Metal–organic framework-derived carbons for battery applications, Adv. Energy Mater., 8, 1800716, 10.1002/aenm.201800716 Kim, 2016, Inorganic nanoparticles in porous coordination polymers, Chem. Soc. Rev., 45, 3828, 10.1039/C5CS00940E Koo, 2018, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors, Adv. Funct. Mater., 28, 1802575, 10.1002/adfm.201802575 Ko, 2016, Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization, ACS Nano, 10, 9287, 10.1021/acsnano.6b03631 Indra, 2018, Metal organic framework derived materials: progress and prospects for the energy conversion and storage, Adv. Mater., 30, 1705146, 10.1002/adma.201705146 Wang, 2018, MOFs-derived porous nanomaterials for gas sensing, Polyhedron, 152, 155, 10.1016/j.poly.2018.06.037 Lü, 2014, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties, ACS Appl. Mater. Interfaces, 6, 4186, 10.1021/am405858v Wang, 2016, Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance, Inorg. Chem. Commun., 63, 48, 10.1016/j.inoche.2015.11.015 Gao, 2016, MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and their gas sensing properties, RSC Adv., 6, 94699, 10.1039/C6RA21567J Li, 2016, MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance, Sens. Actuators B Chem., 225, 158, 10.1016/j.snb.2015.11.034 Jang, 2018, In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: toward sensitive chemiresistors, ACS Cent. Sci., 4, 929, 10.1021/acscentsci.8b00359 Miller, 2014, Nanoscale metal oxide-based heterojunctions for gas sensing: a review, Sens. Actuators B Chem., 204, 250, 10.1016/j.snb.2014.07.074 Yu, 2017, Nanoparticle/MOF composites: preparations and applications, Mater. Horiz., 4, 557, 10.1039/C6MH00586A Chen, 2017, Controllable design of tunable nanostructures inside metal–organic frameworks, Chem. Soc. Rev., 46, 4614, 10.1039/C6CS00537C Koo, 2017, Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath, ACS Appl. Mater. Interfaces, 9, 8201, 10.1021/acsami.7b01284 Yang, 2010, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading, Adv. Funct. Mater., 20, 4258, 10.1002/adfm.201001251 Koo, 2017, Metal-organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties, Sci. Rep., 7, 45074, 10.1038/srep45074 Jang, 2017, Metal organic framework-templated chemiresistor: sensing type transition from P-to-N Using hollow metal oxide polyhedron via galvanic replacement, J. Am. Chem. Soc., 139, 11868, 10.1021/jacs.7b05246 Oh, 2013, Galvanic replacement reactions in metal oxide nanocrystals, Science, 340, 964, 10.1126/science.1234751 Koo, 2016, Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors, J. Am. Chem. Soc., 138, 13431, 10.1021/jacs.6b09167 Rui, 2018, Dual-function metal–organic framework-based wearable fibers for gas probing and energy storage, ACS Appl. Mater. Interfaces, 10, 2837, 10.1021/acsami.7b16761 Choi, 2017, Metal–organic framework-templated PdO-Co3O4 nanocubes functionalized by SWCNTs: improved NO2 reaction kinetics on flexible heating film, ACS Appl. Mater. Interfaces, 9, 40593, 10.1021/acsami.7b11317 Wang, 2015, Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties, J. Mater. Chem. A, 3, 12796, 10.1039/C5TA01108F Cui, 2018, MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties, J. Mater. Chem. A, 6, 14930, 10.1039/C8TA00269J Li, 2015, Hierarchical hollow ZnO cubes constructed using self-sacrificial ZIF-8 frameworks and their enhanced benzene gas-sensing properties, New J. Chem., 39, 7060, 10.1039/C5NJ00549C Jo, 2018, Metal–organic framework-derived hollow hierarchical Co3O4 nanocages with tunable size and morphology: ultrasensitive and highly selective detection of methylbenzenes, ACS Appl. Mater. Interfaces, 10, 8860, 10.1021/acsami.8b00733 Koo, 2017, Metal–organic framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow SnO2 nanotubes for selective acetone sensors, ACS Appl. Mater. Interfaces, 9, 18069, 10.1021/acsami.7b04657 Zhang, 2018, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis, Adv. Energy Mater., 8 Park, 2018, Charge delocalization and bulk electronic conductivity in the mixed-valence metal–organic framework Fe(1,2,3-triazolate)2(BF4)x, J. Am. Chem. Soc., 140, 8526, 10.1021/jacs.8b03696 Stassen, 2016, Chemical vapour deposition of zeolitic imidazolate framework thin films, Nat. Mater., 15, 304, 10.1038/nmat4509 Ma, 2018, Zeolitic imidazolate framework membranes made by ligand-induced permselectivation, Science, 361, 1008, 10.1126/science.aat4123 Wang, 2018, Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2, 65, 10.1038/s41570-018-0010-1 Kim, 2017, exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers, Adv. Mater., 29, 1700737, 10.1002/adma.201700737