Metal–Organic Framework‐Based Stimuli‐Responsive Systems for Drug Delivery

Advanced Science - Tập 6 Số 1 - 2019
Wen Cai1, Junqing Wang2, Chengchao Chu2, Wei Chen1, Chunsheng Wu1, Gang Liu2
1Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
2State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China

Tóm tắt

AbstractWith the rapid development of nanotechnology, stimuli‐responsive nanomaterials have provided an alternative for designing controllable drug delivery systems due to their spatiotemporally controllable properties. As a new type of porous material, metal–organic frameworks (MOFs) have been widely used in biomedical applications, especially drug delivery systems, owing to their tunable pore size, high surface area and pore volume, and easy surface modification. Here, recent progress in MOF‐based stimuli‐responsive systems is presented, including pH‐, magnetic‐, ion‐, temperature‐, pressure‐, light‐, humidity‐, redox‐, and multiple stimuli‐responsive systems for the delivery of anticancer drugs. The remaining challenges and suggestions for future directions for the rational design of MOF‐based nanomedicines are also discussed.

Từ khóa


Tài liệu tham khảo

10.1038/natrevmats.2016.75

10.2147/IJN.S117495

10.1016/j.ajps.2016.06.001

10.1002/adma.201606134

10.1038/nmat3776

10.1002/adma.201605928

10.1002/adma.201707365

10.1002/adma.201800202

10.1039/C7DT04116K

10.1016/j.biomaterials.2017.01.025

10.1021/acsnano.8b00932

10.1039/c3sc22116d

10.1002/adhm.201600818

10.1038/nmat2608

10.1021/ar400151n

10.1021/cr200256v

10.1021/acsami.6b11579

10.1002/smll.201500802

10.1021/ja9010157

10.1039/C3CC47666A

10.1021/nn406590q

10.1021/jacs.7b11754

10.1021/jacs.5b11720

10.1039/C6TB03379B

10.1016/j.micromeso.2016.09.036

10.1088/1361-6528/aa7379

10.1039/C6DT03237K

10.1039/C5TB01830G

10.1021/acsami.6b03988

10.1039/C5DT04031K

10.1039/c3tb00026e

10.1002/anie.201501748

10.1016/j.biomaterials.2016.08.039

10.1016/j.biomaterials.2016.05.027

10.1039/C6NR08071E

10.1021/acsami.6b11378

10.1088/1361-6528/aa91c4

10.1039/C4CC02570A

10.1021/ja8057953

10.1021/acs.molpharmaceut.6b00374

10.1016/j.jssc.2016.02.040

10.1016/j.chempr.2017.02.005

10.1002/chem.201402244

10.1016/j.biomaterials.2017.01.017

10.1002/adfm.201703832

10.1016/j.addr.2011.03.008

10.1063/1.1984765

10.1039/C8QI00149A

10.1039/c0jm01770a

10.1002/smll.201400362

10.1039/C6RA18480D

10.1039/C7NJ02032E

10.1021/ja902972w

10.1021/jm5004107

10.1021/acsami.7b09227

10.1039/c3cs35499g

10.1039/C5CC02339D

10.1021/jacs.7b01451

10.1002/chem.201701904

10.1002/cplu.201600142

10.1039/C6TB01756H

10.7150/thno.16088

10.1039/C6DT04787D

10.1002/adfm.201505260

10.1039/C6SC04824B

10.1002/adfm.201606314

10.1016/j.biomaterials.2017.09.007

10.1016/j.foodchem.2016.11.072

10.1016/j.biomaterials.2009.01.026

10.1016/j.biomaterials.2011.11.022

10.1021/acsami.7b07535

10.1021/acsami.7b19693

10.1039/C8CC02708K

10.1002/adfm.201605926

10.1073/pnas.1306241110

10.1002/anie.201610955

10.1002/adfm.201702102

10.1021/ja711260m

10.1021/ja3115168

10.1039/C4SC03749A

10.1126/sciadv.1600480

10.1002/cphc.201501012

10.1021/acs.molpharmaceut.5b00043

10.1002/smll.201500155

10.1039/C5TB01789K

10.1039/C5NR04045K

10.1002/cnma.201600078

10.1021/acsami.7b16222

10.1002/adfm.201605465

10.1039/C7TB00314E

10.1016/j.micromeso.2017.04.042

10.1002/adma.201602782

10.1039/C7SC01765K

10.1002/anie.201711705

10.1002/adma.201705350

10.1080/14686996.2018.1528850