Chất thải từ đinh kim loại và xỉ thép như là những vật liệu thay thế thân thiện với môi trường cho cấu kiện chắn bức xạ
Tóm tắt
Tái chế chất thải kim loại đã trở thành một yêu cầu toàn cầu nhờ vào lợi ích môi trường và hoạt động kinh tế mạnh mẽ của nó. Chất thải từ đinh kim loại (MNW) là một sản phẩm phụ của quá trình sản xuất đinh kim loại. MNW có kích thước đồng nhất, chứa tỷ lệ sắt cao và có trọng lượng riêng lớn so với cốt liệu bình thường. Chúng tôi trình bày việc tái chế MNW như một phần thay thế cho cốt liệu mịn và xỉ thép lò hồ quang điện (EAFSS) như cốt liệu thô để sản xuất bê tông nặng bền vững (HWC). Mục tiêu nghiên cứu chính của chúng tôi là khảo sát khả năng chắn bức xạ và các tính chất cơ học của HWC bền vững thông qua việc thay thế một phần MNW với 10, 20, 30 và 40% cát. EAFSS là cốt liệu thô cho 60% tổng thể tích. Các tính chất tươi và cứng của HWC đã được trình bày. Hơn nữa, chúng tôi đã phân tích cấu trúc bên trong của các hỗn hợp HWC bằng kính hiển vi điện tử quét. Kết quả của chúng tôi cho thấy những ảnh hưởng tích cực của MNW lên trọng lượng riêng của bê tông. Mật độ của các hỗn hợp HWC dao động từ 2650 đến 3170 kg/m3. Ngoài ra, MNW góp phần tăng cường sức mạnh nén của các hỗn hợp bê tông với mức sử dụng lên đến 30%. Do đó, các tỷ lệ MNW đã cải thiện hành vi chịu thất bại của các hỗn hợp HWC. Hệ số suy giảm tuyến tính của các hỗn hợp HWC được cải thiện là do việc sử dụng các tỷ lệ MNW và mật độ cao hơn so với hỗn hợp tham chiếu.
Từ khóa
Tài liệu tham khảo
Amin, 2019, Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete, Sustain. Environ. Res., 29, 30, 10.1186/s42834-019-0035-2
Ayman, H.H.K., Heniegal, A., and Attia, M.M. (2018, January 16–18). Behavior of post-tensioned fibrous lightweight concrete beams made of natural pumice. Proceedings of the Sustainable Construction and Project Management Sustainable Infrastructure and Transportation for Future Cities, Aswan, Egypt.
Attia, 2021, Banana fiber reinforced concrete: A review, N. Y. Sci. J., 14, 48
Rashad, 2013, A preliminary study on the effect of fine aggregate replacement with metakaolin on strength and abrasion resistance of concrete, Constr. Build. Mater., 44, 487, 10.1016/j.conbuildmat.2013.03.038
Rodrigues, P., Silvestre, J.D., Flores-Colen, I., Viegas, C.A., Ahmed, H.H., Kurda, R., and de Brito, J. (2020). Evaluation of the Ecotoxicological Potential of Fly Ash and Recycled Concrete Aggregates Use in Concrete. Appl. Sci., 10.
Zega, 2011, Recycled concretes made with waste ready-mix concrete as coarse aggregate, J. Mater. Civil Eng., 23, 281, 10.1061/(ASCE)MT.1943-5533.0000165
(2000). Concrete-Part 1: Specification, Performance, Production and Conformity (Standard No. EN 206-1:2003).
Ouda, 2015, Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding, Prog. Nuclear Energy, 79, 48, 10.1016/j.pnucene.2014.11.009
Devi, 2014, Properties of concrete manufactured using steel slag, Procedia Eng., 9, 95, 10.1016/j.proeng.2014.12.229
Binici, 2014, Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag, Constr. Build. Mater., 50, 177, 10.1016/j.conbuildmat.2013.09.033
Nedeljkovic, 2019, Physical Characterization of Dutch Fine Recycled Concrete Aggregates: A Comparative Study. Multidiscip, Digit. Publ. Inst. Proc., 34, 7
Mohammed, 2020, Preparation, performance, and stability of alkali-activated-concrete waste-lead-bearing sludge composites, J. Clean. Prod., 259, 120924, 10.1016/j.jclepro.2020.120924
Bobrowicz, 2021, Comparison of pozzolanic activity of ilmenite mud waste to other pozzolans used as an additive for concrete production, J. Therm. Anal. Calomir., 143, 2901, 10.1007/s10973-020-09740-6
Anshassi, 2019, Approaches to integrate sustainable materials management into waste management planning and policy, Resour. Conserv. Recycl., 148, 55, 10.1016/j.resconrec.2019.04.011
United States Environmental Protection Agency (2017, May 06). Advancing Sustainable Materials Management. Fact Sheet, Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management.
Sear, 2005, Towards zero waste, Concrete, 39, 50
Bai, 2005, Concrete materials research for sustainable development, Concrete, 39, 37
Neville, A.M. (1995). Properties of Concrete, Longman.
Rakshvir, 2006, Studies on recycled aggregates-based concrete, Waste Manag. Res., 24, 225, 10.1177/0734242X06064820
Tayeh, 2018, Utilization of waste iron powder as fine aggregate in cement mortar, J. Eng. Res. Technol., 5, 22
Agwa, 2020, Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete, Constr. Build. Mater., 235, 117541, 10.1016/j.conbuildmat.2019.117541
Maslehuddin, 2003, Comparison of properties of steel slag and crushed limestone aggregate concretes, Constr. Build. Mater., 17, 105, 10.1016/S0950-0618(02)00095-8
Yang, 2021, Effects of ethylenediamine tetra-acetic acid (EDTA) on the accelerated carbonation and properties of artificial steel slag aggregates, Cement Concrete Compos., 118, 103948, 10.1016/j.cemconcomp.2021.103948
Chunlin, 2011, Possibility of concrete prepared with steel slag as fine and coarse aggregates: A preliminary study, Proced. Eng., 24, 412, 10.1016/j.proeng.2011.11.2667
Miah, M.J., Patoary, M.M.H., Paul, S.C., Babafemi, A.J., and Panda, B. (2020). Enhancement of mechanical properties and porosity of concrete using steel slag coarse aggregate. Materials, 13.
Saxena, 2018, Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete, Construct. Build. Mater., 165, 126, 10.1016/j.conbuildmat.2018.01.030
Wang, 2015, Hydration properties of steel slag under autoclaved condition, J. Therm. Anal. Calorim., 120, 1241, 10.1007/s10973-015-4397-3
Hulthen, 1981, Five decades of iron powder production, Inf. J. Powder Metall. Powder Technol., 17, 81
Ghannam, 2016, Experimental study of concrete made with granite and iron powders as partial replacement of sand, Sustain. Mater. Technol., 9, 1
Ghailan, A.H. (2005, January 5–7). Modified concrete by using a waste material as a coarse aggregate. Proceedings of the Construction Research Congress, San Diego, CA, USA.
Ismail, 2008, Reuse of waste iron as a partial replacement of sand in concrete, Waste Manag., 28, 2048, 10.1016/j.wasman.2007.07.009
Adeyanju, 2011, Effects of Steel Fibers and Iron Filings on Thermal and Mechanical Properties of Concrete for Energy Storage Application, J. Miner. Mater. Charact. Eng., 10, 1429
(2017). Standard Specification for Portland Cement (Standard No. ASTM C150/C150M-17).
(2013). Standard Specification for Concrete Aggregates (Standard No. ASTM C33/C33M).
(2013). Standard Specification for Chemical Admixtures for Concrete (Standard No. ASTM C494).
(2015). Standard Test Method for Slump of Hydraulic-Cement Concrete (Standard No. ASTM C143/C143M-15a).
(2008). Testing of Concrete (Standard No. ESS 1658/2008).
(2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens (Standard No. ASTM C496/C496M-17).
(2014). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression (Standard No. ASTM C469/C469M-14).
Mostofinejad, 2012, Mix design effective parameters on c-ray attenuation coefficient and strength of normal and heavyweight concrete, Constr. Build. Mater., 28, 224, 10.1016/j.conbuildmat.2011.08.043
2018, Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture, Cement Concr. Compos., 92, 56, 10.1016/j.cemconcomp.2018.05.015
Ouda, 2017, The effect of replacing sand by iron slag on physical, mechanical and radiological properties of cement mortar, HRBC J., 13, 255
Singh, 2002, Gamma-ray attenuation coefficients in bismuth borate glasses, Nuclear Instr. Methods Phys. Res. Sec. B Beam Interact. Mater. Atoms, 194, 1, 10.1016/S0168-583X(02)00498-6
(2017). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concret (Standard No. ASTM C138/C138M-17a).
Demirboga, 2006, Production of high strength concrete by use of industrial by-products, Build. Environ., 41, 1124, 10.1016/j.buildenv.2005.04.023
(2019). Building Code Requirements for Structural Concrete and Commentary (Standard No. ACI 318-19).
Givi, 2011, The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete, Compos. Part B Eng., 42, 562, 10.1016/j.compositesb.2010.10.002
Alwaeli, 2012, Recycling of scale and steel chips waste as a partial replacement of sand in concrete, Constr. Build. Mater., 28, 157, 10.1016/j.conbuildmat.2011.08.047
Rai, 2002, Metallurgical slag as a component in blended cement, Constr. Build. Mater., 116, 489, 10.1016/S0950-0618(02)00046-6
Tufekci, 2018, Development of heavyweight high-performance fiber reinforced cementitious composites (HPFRCC)–Part II: X-ray and gamma radiation shielding properties, Constr. Build. Mater., 163, 326, 10.1016/j.conbuildmat.2017.12.086
Saad, 2020, Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers, Mech. Adv. Mater. Struct., 29, 1
(2008). Building Code Requirements for Structural Concrete and Commentary (Standard No. ACI 318-08).
Akkurt, 2013, The effect of barite proportion on neutron and gamma-ray shielding, Ann. Nuclear Energy, 51, 5, 10.1016/j.anucene.2012.08.026
Sadrmomtazi, 2019, A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete, Constr. Build. Mater., 229, 116905, 10.1016/j.conbuildmat.2019.116905
Reyhancan, 2016, Properties of heavyweight concrete for structural and radiation shielding purposes, Arab. J. Sci. Eng., 41, 1573, 10.1007/s13369-015-1868-6