Vật liệu kim loại, tính chất và phương pháp thiết kế của các khung sinh học xốp cho chế tạo bổ sung: Một bài tổng quan

Yuting Lv1,2, Binghao Wang1, Guohao Liu1, Yujin Tang3, Eryi Lu4, Kegong Xie3, Changgong Lan3, Jia Liu3, Zhenbo Qin5, Liqiang Wang2
1College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
2State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
3Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
4Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
5Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China

Tóm tắt

Thiết kế một implant tương tự như xương người là một trong những vấn đề quan trọng trong kỹ thuật mô xương. Các khung xốp kim loại có triển vọng tốt trong việc thay thế mô xương nhờ vào việc chúng có độ bền đàn hồi phù hợp, sức mạnh tốt hơn và khả năng tương thích sinh học. Tuy nhiên, các phương pháp chế biến truyền thống gặp khó khăn trong việc chế tạo các khung có cấu trúc xốp, giới hạn sự phát triển của các khung xốp. Với sự tiến bộ của công nghệ chế tạo bổ sung (AM) và công nghệ hỗ trợ máy tính, sự phát triển của các khung kim loại xốp cũng mở ra những cơ hội chưa từng có. Trong những năm gần đây, nhiều vật liệu kim loại mới và các phương pháp thiết kế sáng tạo đã được sử dụng để chế tạo các khung xốp với các tính chất cơ học vượt trội và khả năng tương thích sinh học. Bài viết này tổng hợp tiến trình nghiên cứu về các khung kim loại xốp và giới thiệu các công nghệ AM được sử dụng trong các khung kim loại xốp. Tiếp theo, các ứng dụng của các vật liệu kim loại khác nhau trong các khung xương được tóm tắt, và những lợi thế cũng như hạn chế của các phương pháp thiết kế khung khác nhau được thảo luận. Cuối cùng, chúng tôi hy vọng vào triển vọng phát triển của công nghệ AM trong các khung kim loại xốp.

Từ khóa


Tài liệu tham khảo

Abueidda, 2019, Mechanical properties of 3D printed polymeric gyroid cellular structures: experimental and finite element study., Mater. Des., 165, 10.1016/j.matdes.2019.107597

Ahmadi, 2019, From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials., Acta Biomater., 83, 153, 10.1016/j.actbio.2018.10.043

Almeida, 2014, Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation., Med. Eng. Phys., 36, 1033, 10.1016/j.medengphy.2014.05.006

Arabnejad, 2016, High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints., Acta Biomater., 30, 345, 10.1016/j.actbio.2015.10.048

Ataee, 2018, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications., Mater. Des., 137, 345, 10.1016/j.matdes.2017.10.040

Ataee, 2017, Metal scaffolds processed by electron beam melting for biomedical applications., Metallic Foam Bone, 3, 83, 10.1016/b978-0-08-101289-5.00003-2

Bae, 2014, Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering., J. Adv. Prosthodont., 6, 266, 10.4047/jap.2014.6.4.266

Baldwin, 2006, Host inflammatory response to NiCr. CoCr, and Ti in a soft tissue implantation model., J. Biomed. Mater. Res. A, 79, 574, 10.1002/jbm.a.30856

Bartolomeu, 2020, Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting., J. Mech. Behav. Biomed. Mater., 110, 10.1016/j.jmbbm.2020.103891

Ben, 2015, Design of porous micro-structures using curvature analysis for additive-manufacturing., Procedia CIRP., 36, 279, 10.1016/j.procir.2015.01.057

Bose, 2018, Additive manufacturing of biomaterials., Prog. Mater. Sci., 93, 45, 10.1016/j.pmatsci.2017.08.003

Bundy, 2008, Biomaterials and the chemical environment of the body., Joint Replacement Technology, 44, 56, 10.1533/9781845694807.1.56

Cai, 2008, A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement., Comput. Aided Des., 40, 1040, 10.1016/j.cad.2008.09.004

Cai, 2009, Morphology-controllable modeling approach for a porous scaffold structure in tissue engineering., Virtual Phys. Prototyp., 4, 149, 10.1080/17452750903208467

Cai, 2012, A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinemen., Comput. Aided Tissue Eng., 868, 45, 10.1007/978-1-61779-764-4_3

Čapek, 2016, Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting., Mater. Sci. Eng. C, 69, 631, 10.1016/j.msec.2016.07.027

Caravaggi, 2019, CoCr porous scaffolds manufactured via selective laser melting in orthopedics: topographical, mechanical, and biological characterization., J. Biomed. Mater. Res. Part B, 107, 2343, 10.1002/jbm.b.34328

Carluccio, 2019, The influence of laser processing parameters on the densification and surface morphology of pure Fe and Fe-35Mn scaffolds produced by selective laser melting., J. Manuf. Processes, 40, 113, 10.1016/j.jmapro.2019.03.018

Carluccio, 2020, Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications., Acta Biomater., 103, 346, 10.1016/j.actbio.2019.12.018

Challis, 2010, Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication., Adv. Eng. Mater., 12, 1106, 10.1002/adem.201000154

Chantarapanich, 2012, Scaffold library for tissue engineering: a geometric evaluation., Comput. Math. Method. M., 2012, 1, 10.1155/2012/407805

Chen, 2018, Microstructure and fracture properties of open-cell porous Ti-6Al-4V with high porosity fabricated by electron beam melting., Mater. Charact., 138, 255, 10.1016/j.matchar.2018.02.016

Chen, 2019, Topological design of 3D chiral metamaterials based on couple-stress homogenization., J. Mech. Phys. Solids, 131, 372, 10.1016/j.jmps.2019.07.014

Chen, , Recent developments of biomaterials for additive manufacturing of bone scaffolds., Adv. Healthc. Mater., 9, 10.1002/adhm.202000724

Chen, , Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth., Mater. Sci. Eng. C., 106, 10.1016/j.msec.2019.110289

Cheng, 2014, Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner., Biofabrication, 6, 10.1088/1758-5082/6/4/045007

Chohan, 2017, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications., Compos. Part B Eng., 117, 138, 10.1016/j.compositesb.2017.02.045

Chua, 2003, Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: parametric library and assembly program., Adv. Manuf. Technol., 21, 303

Cockerill, 2020, Porous zinc scaffolds for bone tissue engineering applications: a novel additive manufacturing and casting approach., Mater. Sci. Eng. C Mater. Biol. Appl., 110, 10.1016/j.msec.2020.110738

Cutolo, 2020, Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: on the effect of the load direction., J. Mech. Behav. Biomed. Mater., 104, 10.1016/j.jmbbm.2020.103656

Demir, 2017, Additive manufacturing of cardiovascular CoCr stents by selective laser melting., Mater. Des., 119, 338, 10.1016/j.matdes.2017.01.091

Dias, 2014, Optimization of scaffold design for bone tissue engineering: a computational and experimental study., Med. Eng. Phys., 36, 448, 10.1016/j.medengphy.2014.02.010

Dogan, 2020, 3D Printing metamaterials towards tissue engineering., Appl. Mater. Today, 20, 10.1016/j.apmt.2020.100752

Du, 2019, Hierarchically designed bone scaffolds: from internal cues to external stimuli., Biomaterials, 218, 10.1016/j.biomaterials.2019.119334

Du, 2020, Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM)., Mater. Chem. Phys., 239, 10.1016/j.matchemphys.2019.121968

Fang, 2020, Review on residual stress in selective laser melting additive manufacturing of alloy parts., Optics Laser Technol., 129, 10.1016/j.optlastec.2020.106283

Fantini, 2017, Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization., Int. J. Interact. Des. Manuf., 12, 585, 10.1007/s12008-017-0416-x

Fantini, 2016, A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices., Virtual Phys. Prototy., 11, 77, 10.1080/17452759.2016.1172301

Feinberg, 1999, An image-based approach to design and manufacture of scaffolds for maxillofacial reconstruction., Maxillofacial Reconstruction, 28, 10.1016/S0901-5027(99)80817-0

Fu, 2020, Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc., Biomaterials, 230, 10.1016/j.biomaterials.2019.119641

Gibson, 2015, Directed energy deposition processes., Addit. Manuf. Technol., 10, 245, 10.1007/978-1-4939-2113-3_10

Gokuldoss, 2017, Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines., Materials, 10, 10.3390/ma10060672

Gómez, 2016, Design and properties of 3D scaffolds for bone tissue engineering., Acta Biomater., 42, 341, 10.1016/j.actbio.2016.06.032

Gong, 2014, Review on powder-based electron beam additive manufacturing technology., Manuf. Rev., 1, 10.1051/mfreview/2014001

Goodridge, 2012, Laser sintering of polyamides and other polymers., Prog. Mater. Sci., 57, 229, 10.1016/j.pmatsci.2011.04.001

Guo, 2013, The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young’s modulus., Int. J. Mol. Med., 31, 689, 10.3892/ijmm.2013.1249

Habijan, 2013, The biocompatibility of dense and porous Nickel–Titanium produced by selective laser melting., Mater. Sci. Eng. C, 33, 419, 10.1016/j.msec.2012.09.008

Hafeez, 2020, Superelastic response of low-modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated by laser powder bed fusion., Addit. Manuf., 34, 10.1016/j.addma.2020.101264

Han, 2018, Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants., J. Mech. Behav. Biomed. Mater., 80, 119, 10.1016/j.jmbbm.2018.01.013

He, 2021, Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants., Acta Biomater., 121, 665, 10.1016/j.actbio.2020.11.032

Henkel, 2013, Bone regeneration based on tissue engineering conceptions — a 21st century perspective., Bone Res., 1, 216, 10.4248/br201303002

Hollister, 2005, Porous scaffold design for tissue engineering., Nat. Mater., 4, 518, 10.1038/nmat1421

Hooreweder, 2017, CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance., J. Mech. Behav. Biomed. Mater., 70, 60, 10.1016/j.jmbbm.2017.03.017

Huang, 2014, A novel model for porous scaffold to match the mechanical anisotropy and the hierarchical structure of bone., Mater. Lett, 122, 315, 10.1016/j.matlet.2014.02.057

Jones, 2007, Assessment of bone ingrowth into porous biomaterials using MICRO-CT., Biomaterials, 28, 2491, 10.1016/j.biomaterials.2007.01.046

Kapat, 2017, Influence of porosity and pore-size distribution in Ti6Al4V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography., ACS Appl. Mater. Inter., 9, 39235, 10.1021/acsami.7b13960

Kelly, 2019, Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering., Acta Biomater., 94, 610, 10.1016/j.actbio.2019.05.046

Kopp, 2019, Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds., Acta Biomater., 98, 23, 10.1016/j.actbio.2019.04.012

Kou, 2010, A simple and effective geometric representation for irregular porous structure modeling., Comput. Aided Des., 42, 930, 10.1016/j.cad.2010.06.006

Lee, 2017, Lasers in additive manufacturing: a review., Int. J. Pr. Eng. Man GT., 4, 307, 10.1007/s40684-017-0037-7

Lei, 2020, Parametric design of Voronoi-based lattice porous structures., Mater. Des., 191, 10.1016/j.matdes.2020.108607

Li, , Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: a review., J. Mech. Behav. Biomed. Mater., 105, 10.1016/j.jmbbm.2020.103671

Li, , Additively manufactured biodegradable porous metals., Acta Biomater., 115, 29, 10.1016/j.actbio.2020.08.018

Li, , Additively manufactured biodegradable porous zinc., Acta Biomater., 101, 609, 10.1016/j.actbio.2019.10.034

Li, 2006, Investigation of bone tissue microstructure and indirect fabrication of biomimetic scaffold via stereolithography., Beijing Biomed. Eng., 25

Li, , Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications., Acta Biomater., 87, 273, 10.1016/j.actbio.2019.01.051

Li, , Additively manufactured functionally graded biodegradable porous iron., Acta Biomater., 96, 646, 10.1016/j.actbio.2019.07.013

Li, 2018, Additively manufactured biodegradable porous magnesium., Acta Biomater., 67, 378, 10.1016/j.actbio.2017.12.008

Liang, 2020, 3D-printed porous titanium scaffolds incorporating niobium for high bone regeneration capacity., Mater. Des., 194, 10.1016/j.matdes.2020.108890

Limmahakhun, 2017, 3D-printed cellular structures for bone biomimetic implants., Addit. Manuf., 15, 93, 10.1016/j.addma.2017.03.010

Lin, 2013, Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)., Mater. Sci. Eng. C. Mater. Biol. Appl., 33, 4551, 10.1016/j.msec.2013.07.010

Little, 2011, Bone formation, remodelling and healing., Surgery, 29, 141, 10.1016/j.mpsur.2011.01.002

Liu, 2018, Functionally graded porous scaffolds in multiple patterns: new design method, physical and mechanical properties., Mater. Des., 160, 849, 10.1016/j.matdes.2018.09.053

Liu, 2020, Nano-modifified titanium implant materials: a way toward improved antibacterial properties., Front. Bioeng. Biotechnol., 8, 10.3389/fbioe.2020.576969

Liu, 2019, Effects of Nb on the microstructure and compressive properties of an As-Cast Ni44Ti44Nb12 eutectic alloy., Materials, 12, 10.3390/ma12244118

Liu, 2020, Strengthening mechanism and micropillar analysis of high-strength NiTi–Nb eutectic-type alloy prepared by laser powder bed fusion., Compos. Part B Eng., 200, 10.1016/j.compositesb.2020.108358

Liu, 2021, Compressive properties and microstructure evolution in NiTiNb alloy with mesh eutectic phase., Mater. Sci. Eng. A, 801, 10.1016/j.msea

Liu, 2016, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting., Acta Mater., 113, 56, 10.1016/j.actamat.2016.04.029

Luo, 2020, Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young’s modulus: mechanical property, biocompatibility, and proteomics analysis., Mater. Sci. Eng. C, 114, 10.1016/j.msec.2020.110903

Lv, 2019, Gradient microstructures and mechanical properties of Ti-6Al-4V/Zn composite prepared by friction stir processing., Materials, 12, 10.3390/ma12172795

Ma, 2020, Research progress of titanium-based high entropy alloy: methods, properties, and applications., Front. Bioeng. Biotechnol., 8, 10.3389/fbioe.2020.603522

Ma, , Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS., J. Mech. Behav. Biomed. Mater., 107, 10.1016/j.jmbbm.2020.103727

Ma, , Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting., Mater. Des., 195, 10.1016/j.matdes.2020.109034

Ma, 2019, Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting., J. Mech. Behav. Biomed. Mater., 93, 158, 10.1016/j.jmbbm.2019.01.023

Maconachie, 2019, SLM lattice structures: properties, performance, applications and challenges., Mater. Des., 183, 10.1016/j.matdes.2019.108137

Marinela, 2019, Structural design optimization of knee replacement implants for additive manufacturing., Procedia Manuf., 34, 574, 10.1016/j.promfg.2019.06.222

Mark, 2002, Tissue engineered microsphere-based matrices for bone repair: design and evaluation., Biomaterials, 23, 551, 10.1016/S0142-9612(01)00137-5

Maskery, 2016, An investigation into reinforced and functionally graded lattice structures., J. Cell. Plast., 53, 151, 10.1177/0021955x16639035

Mohamed, 2015, Optimization of fused deposition modeling process parameters: a review of current research and future prospects., Adv. Manuf., 3, 42, 10.1007/s40436-014-0097-7

Moiduddin, 2017, Structural and mechanical characterization of custom design cranial implant created using additive manufacturing., Electron. J. Biotechn., 29, 22, 10.1016/j.ejbt.2017.06.005

Moravej, 2011, Biodegradable metals for cardiovascular stent application: interests and new opportunities., Int. J. Mol. Sci., 12, 4250, 10.3390/ijms12074250

Motallebzadeh, 2019, Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications., Intermetallics, 113, 10.1016/j.intermet.2019.106572

Murray, 2003, Microstructure evolution during solid-state foaming of titanium., Compos. Sci. Technol., 63, 2311, 10.1016/s0266-3538(03)00264-1

Nagase, 2019, Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloysas metallic biomaterials., J. Pre Proof, 107, 10.1016/j.msec.2019.110322

Nasrullah, 2020, Design and optimization of crashworthy components based on lattice structure configuration., Structures, 26, 969, 10.1016/j.istruc.2020.05.001

Ngo, 2018, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges., Compos. Part B Eng., 143, 172, 10.1016/j.compositesb.2018.02.012

Onal, 2018, Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds., Metals, 8, 10.3390/met8040200

Ouyang, 2019, Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth., Mater. Des., 183, 10.1016/j.matdes.2019.108151

Park, 2018, Design of complex bone internal structure using topology optimization with perimeter control., Comput. Biol. Med., 94, 74, 10.1016/j.compbiomed.2018.01.001

Peng, 2019, Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications., J. Zhejlang. Univ. Sci. B, 20, 647, 10.1631/jzus.B1800622

Podshivalov, 2013, Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds., Procedia Cirp., 5, 247, 10.1016/j.procir.2013.01.049

Qu, 2020, Additive manufacturing for bone tissue engineering scaffolds., Mater. Today Commun., 24, 10.1016/j.mtcomm.2020.101024

Radman, 2012, Topology optimization of functionally graded cellular materials., J. Mater. Sci., 48, 1503, 10.1007/s10853-012-6905-1

Ran, 2018, Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes., J. Mech. Behav. Biomed. Mater., 84, 1, 10.1016/j.jmbbm.2018.04.010

Ren, 2019, Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique., J. Mater. Sci. Technol., 35, 285, 10.1016/j.jmst.2018.09.066

Roseti, 2017, Scaffolds for bone tissue engineering: state of the art and new perspectives., Mater. Sci. Eng. C, 78, 1246, 10.1016/j.msec.2017.05.017

Saint-Pastou Terrier, 2017, Bone responses in health and infectious diseases: a focus on osteoblasts., J. Infection, 75, 281, 10.1016/j.jinf.2017.07.007

Shah, 2016, Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting., Acta Biomater., 36, 296, 10.1016/j.actbio.2016.03.033

Shor, 2007, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro., Biomaterials, 28, 5291, 10.1016/j.biomaterials.2007.08.018

Sing, 2016, Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties., J. Alloy. Compd., 660, 461, 10.1016/j.jallcom.2015.11.141

Singh, 2010, Hierarchically structured titanium foams for tissue scaffold applications., Acta Biomater., 6, 4596, 10.1016/j.actbio.2010.06.027

Song, 2007, A possible biodegradable magnesium implant material., Adv. Eng. Mater., 9, 298, 10.1002/adem.200600252

Sood, 2010, Parametric appraisal of mechanical property of fused deposition modelling processed parts., Mater. Des., 31, 287, 10.1016/j.matdes.2009.06.016

Speirs, 2017, Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison., J. Mech. Behav. Biomed. Mater., 70, 53, 10.1016/j.jmbbm.2017.01.016

Su, 2019, Zinc-based biomaterials for regeneration and therapy., Trends Biotechnol., 37, 428, 10.1016/j.tibtech.2018.10.009

Sun, 2005, Bio-CAD modeling and its applications in computer-aided tissue engineering., Comput. Aided Des., 37, 1097, 10.1016/j.cad.2005.02.002

Surmeneva, 2019, Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles., Appl. Surf. Sci., 480, 822, 10.1016/j.apsusc.2019.03.003

Szymczyk-Ziółkowska, 2020, A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques., Biocybern. Biomed. Eng., 40, 624, 10.1016/j.bbe.2020.01.015

Taniguchi, 2016, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment., Mater. Sci. Eng. C, 59, 690, 10.1016/j.msec.2015.10.069

Tofail, 2018, Additive manufacturing: scientific and technological challenges, market uptake and opportunities., Mater. Today, 21, 22, 10.1016/j.mattod.2017.07.001

Wang, , 3D printing of bone tissue engineering scaffolds., Bioact. Mater., 5, 82, 10.1016/j.bioactmat.2020.01.004

Wang, , Crushing behavior and deformation mechanism of additively manufactured Voronoi-based random open-cell polymer foams., Mater. Today Commun., 25, 10.1016/j.mtcomm.2020.101406

Wang, , The design of Ti6Al4V Primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold., Mater. Des., 193, 10.1016/j.matdes.2020.108830

Wang, , Challenges and solutions for the additive manufacturing of biodegradable magnesium implants., Engineering, 6, 1267, 10.1016/j.eng.2020.02.015

Wang, 2019, Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis., Mater. Sci. Eng. C, 104, 10.1016/j.msec.2019.109908

Wang, 2019, Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application., Mater. Des., 168, 10.1016/j.matdes.2019.107643

Wang, 2016, Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires., Sci. Rep., 6, 10.1038/srep23905

Wang, 2017, 3D printing of polymer matrix composites: a review and prospective., Compos. Part B Eng., 110, 442, 10.1016/j.compositesb.2016.11.034

Wang, 2016, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review., Biomaterials, 83, 127, 10.1016/j.biomaterials.2016.01.012

Wauthle, , Revival of pure titanium for dynamically loaded porous implants using additive manufacturing., Mater. Sci. Eng. C, 54, 94, 10.1016/j.msec.2015.05.001

Wauthle, , Additively manufactured porous tantalum implants., Acta Biomater., 14, 217, 10.1016/j.actbio.2014.12.003

Wettergreen, 2005, Creation of a unit block library of architectures for use in assembled scaffold engineering., Comput. Aided Des., 37, 1141, 10.1016/j.cad.2005.02.005

Xiao, 2013, An integrated approach of topology optimized design and selective laser melting process for titanium implants materials., Bio Med. Mater. Eng., 23, 433, 10.3233/bme-130765

Xiao, 2012, Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds., T. Nonferr. Metal. Soc., 22, 2554, 10.1016/s1003-6326(11)61500-8

Xiao, 2016, Geometry models of porous media based on Voronoi tessellations and their porosity–permeability relations., Comput. Math. Appl., 72, 328, 10.1016/j.camwa.2015.09.009

Yamamoto, 2004, Cytocompatibility evaluation of Ni-free stainless steel manufactured by nitrogen adsorption treatment., Mater. Sci. Eng. C, 24, 737, 10.1016/j.msec.2004.08.017

Yan, 2015, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting., J. Mech. Behav. Biomed. Mater., 51, 61, 10.1016/j.jmbbm.2015.06.024

Yan, 2014, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting., Mater. Des., 55, 533, 10.1016/j.matdes.2013.10.027

Yan, 2019, Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting., J. Alloy. Compd, 782, 209, 10.1016/j.jallcom.2018.12.220

Yang, 2014, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering., Comput. Aided Des., 56, 11, 10.1016/j.cad.2014.06.006

Yang, 2015, Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering., Med. Eng. Phys., 37, 1037, 10.1016/j.medengphy.2015.08.006

Yang, 2014, Effective method for multi-scale gradient porous scaffold design and fabrication., Mater. Sci. Eng. C, 43, 502, 10.1016/j.msec.2014.07.052

Yang, 2013, Design of 3D orthotropic materials with prescribed ratios for effective Young’s moduli., Comp. Mater. Sci., 67, 229, 10.1016/j.commatsci.2012.08.043

Yang, 2018, TC4/Ag metal matrix nanocomposites modified by friction stir processing: surface characterization, antibacterial property, and cytotoxicity in vitro., ACS App.l Mater. Interfaces, 10, 41155, 10.1021/acsami.8b16343

Yoo, , Three-dimensional surface reconstruction of human bone using a -spline based interpolation approach., Comput. Aided Des., 43, 934, 10.1016/j.cad.2011.03.002

Yoo, , Porous scaffold design using the distance field and triply periodic minimal surface models., Biomaterials, 32, 7741, 10.1016/j.biomaterials.2011.07.019

Yu, 2019, Investigation of functionally graded TPMS structures fabricated by additive manufacturing., Mater. Des., 182, 10.1016/j.matdes.2019.108021

Yuan, 2019, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review., Bioact. Mater., 4, 56, 10.1016/j.bioactmat.2018.12.003

Zadpoor, 2019, Mechanical performance of additively manufactured meta-biomaterials., Acta Biomater., 85, 41, 10.1016/j.actbio.2018.12.038

Zhang, 2020, Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: design, manufacturing and characterization., J. Manuf. Porcess, 56, 1166, 10.1016/j.jmapro.2020.06.005

Zhang, 2019, Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials., Acta Biomater., 84, 437, 10.1016/j.actbio.2018.12.013

Zhang, 2020, Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface., Addit. Manuf., 32, 10.1016/j.addma.2019.101015

Zhang, 2018, Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges., Curr. Opin. Solid St. M., 22, 75, 10.1016/j.cossms.2018.05.002

Zhao, 2019, Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting., J. Alloy. Compd., 804, 288, 10.1016/j.jallcom.2019.06.307

Zhao, 2014, Permeability measurements and modeling of topology-optimized metallic 3-D woven lattices., Acta Mater., 81, 326, 10.1016/j.actamat.2014.08.037

Zhao, 2018, “Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications,” in, Titanium in Medical and Dental Applications, 277, 10.1016/b978-0-12-812456-7.00013-5

Zheng, 2020, Parameterized design and fabrication of porous bone scaffolds for the repair of cranial defects., Med. Eng. Phys., 81, 39, 10.1016/j.medengphy.2020.05.002

Zhou, 2015, Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering., J. Mech. Behav. Biomed. Mater., 48, 1, 10.1016/j.jmbbm.2015.04.002

Zhou, 2020, Sheet and network based functionally graded lattice structures manufactured by selective laser melting: design, mechanical properties, and simulation., Int. J. Mech. Sci., 175, 10.1016/j.ijmecsci.2020.105480

Zhu, 2018, Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing., Int. J. Nanomed., 13, 1881, 10.2147/IJN.S154260

Zhu, 2016, Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing., Sci. Rep., 6, 10.1038/srep38875