Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors

Inorganic Chemistry Frontiers - Tập 5 Số 1 - Trang 11-28
Xinran Li1,2,3,4,5, Xiao Xiao1,2,3,4,5, Qing Li1,2,3,4,5, Jilei Wei1,2,3,4,5, Huaiguo Xue1,2,3,4,5, Huan Pang1,2,3,4,5
1Institute for Innovative Materials and Energy
2P. R. China
3School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, Jiangsu, P. R. China
4Yangzhou
5Yangzhou University

Tóm tắt

With the ever increasing demand for clean, sustainable energy, electrochemical supercapacitors with the advantages of high power density, high efficiency and long life expectancy have become one of the major devices for energy storage and power supply, and have found wide application in hybrid power sources, backup power sources, starting power for fuel cells and burst-power generation in electronic devices.

Từ khóa


Tài liệu tham khảo

Liu, 2014, Adv. Mater., 26, 4855, 10.1002/adma.201401513

Wang, 2016, J. Mater. Chem. A, 4, 5828, 10.1039/C6TA02056A

Xu, 2013, ACS Nano, 7, 5453, 10.1021/nn401450s

Hu, 2016, Angew. Chem., Int. Ed., 55, 5733, 10.1002/anie.201600029

Niu, 2013, Adv. Mater., 25, 1058, 10.1002/adma.201204003

Li, 2015, Carbon, 92, 11, 10.1016/j.carbon.2015.02.054

Palomares, 2012, Energy Environ. Sci., 5, 5884, 10.1039/c2ee02781j

Xu, 2015, Adv. Mater., 27, 8082, 10.1002/adma.201504151

Yuan, 2014, Angew. Chem., Int. Ed., 53, 1488, 10.1002/anie.201303971

Xie, 2013, Nano Energy, 2, 65, 10.1016/j.nanoen.2012.07.016

Yuan, 2012, Adv. Funct. Mater., 22, 4592, 10.1002/adfm.201200994

Tang, 2016, Electrochim. Acta, 190, 118, 10.1016/j.electacta.2016.01.042

Zhai, 2016, Nanoscale Horiz., 1, 109, 10.1039/C5NH00048C

Li, 2017, Nanoscale, 9, 216, 10.1039/C6NR07680G

Lei, 2016, Nat. Commun., 7, 12697, 10.1038/ncomms12697

Wang, 2017, Adv. Sci., 1600289, 10.1002/advs.201600289

Niu, 2011, Energy Environ. Sci., 4, 1440, 10.1039/c0ee00261e

Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k

Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297

Conway, 1991, J. Electrochem. Soc., 138, 1539, 10.1149/1.2085829

Xia, 2015, J. Mater. Chem. A, 3, 1216, 10.1039/C4TA05568C

B. E. Conway , Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , Kluwer Aca. , New York , 1999

Burke, 2000, J. Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7

Teng, 2017, Carbon, 113, 63, 10.1016/j.carbon.2016.11.030

Zhao, 2017, Inorg. Chem. Front., 4, 442, 10.1039/C6QI00595K

Díaz, 2012, Mater. Lett., 68, 126, 10.1016/j.matlet.2011.10.046

Miles, 2013, Electrochem. Commun., 27, 9, 10.1016/j.elecom.2012.10.039

Conway, 1997, J. Power Sources, 66, 1, 10.1016/S0378-7753(96)02474-3

Zhou, 2016, ACS Appl. Mater. Interfaces, 8, 28904, 10.1021/acsami.6b10640

Li, 2017, Adv. Funct. Mater., 27, 1605784, 10.1002/adfm.201605784

Liu, 2017, J. Mater. Chem. A, 5, 1421, 10.1039/C6TA09528C

Theerthagiri, 2017, ChemistrySelect, 2, 201, 10.1002/slct.201601628

Li, 2017, J. Mater. Chem. A, 5, 12774, 10.1039/C7TA03004E

Wei, 2009, Electrochem. Commun., 11, 1996, 10.1016/j.elecom.2009.08.037

Wang, 2015, J. Mater. Chem. A, 3, 15292, 10.1039/C5TA03201F

Khomenko, 2010, J. Power Sources, 195, 4234, 10.1016/j.jpowsour.2010.01.006

Wang, 2017, ACS Sustainable Chem. Eng., 5, 5679, 10.1021/acssuschemeng.7b00131

Zheng, 2009, J. Electrochem. Soc., 156, A500, 10.1149/1.3121564

Amatucci, 2011, J. Electrochem. Soc., 148, A930, 10.1149/1.1383553

Roldán, 2011, Angew. Chem., Int. Ed., 123, 1699, 10.1002/anie.201006811

Katsuhiko, 2012, Energy Environ. Sci., 5, 9363, 10.1039/c2ee21675b

Tan, 2012, Chem. Mater., 24, 3153, 10.1021/cm301427w

Wang, 2016, Chem. Soc. Rev., 45, 5925, 10.1039/C5CS00580A

Ji, 2015, J. Mater. Chem. A, 3, 9909, 10.1039/C5TA01003A

Jana, 2015, J. Mater. Chem. A, 3, 7323, 10.1039/C4TA07009G

Roldán, 2015, Phys. Chem. Chem. Phys., 17, 1084, 10.1039/C4CP05124F

Zhang, 2016, Adv. Mater., 28, 5242, 10.1002/adma.201600319

Xiao, 2017, Adv. Mater. Interfaces, 1600798, 10.1002/admi.201600798

Jabeen, 2016, ACS Appl. Mater. Interfaces, 8, 33732, 10.1021/acsami.6b12518

Kandalkar, 2009, J. Alloys Compd., 478, 594, 10.1016/j.jallcom.2008.11.095

Senthilkumar, 2014, Solid State Sci., 35, 18, 10.1016/j.solidstatesciences.2014.06.004

Zukalová, 2005, Chem. Mater., 17, 1248, 10.1021/cm048249t

Zhang, 2017, Small, 1700917, 10.1002/smll.201700917

Zheng, 2017, Adv. Energy Mater., 1602733, 10.1002/aenm.201602733

Zhou, 2015, J. Mater. Chem. A, 3, 21201, 10.1039/C5TA05658F

Zhang, 2015, ACS Appl. Mater. Interfaces, 7, 2404, 10.1021/am507014w

Pan, 2016, Adv. Energy Mater., 6, 1501867, 10.1002/aenm.201501867

Kotz, 2000, Electrochim. Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6

Zeng, 2015, Renewable Sustainable Energy Rev., 52, 1759, 10.1016/j.rser.2015.08.014

Lu, 2016, RSC Adv., 6, 87188, 10.1039/C6RA15736J

Galizzioli, 1974, J. Appl. Electrochem., 4, 57, 10.1007/BF00615906

Salunkhe, 2015, Nano Energy, 11, 211, 10.1016/j.nanoen.2014.09.030

Tan, 2015, J. Am. Chem. Soc., 137, 1572, 10.1021/ja511539a

Tan, 2015, ACS Nano, 9, 6288, 10.1021/acsnano.5b03075

Tong, 2016, J. Mater. Sci., 51, 1966, 10.1007/s10853-015-9506-y

Tarascon, 2001, Nature, 414, 359, 10.1038/35104644

Brezesinski, 2010, Nat. Mater., 9, 146, 10.1038/nmat2612

Aricò, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Augustyn, 2014, Energy Environ. Sci., 7, 1597, 10.1039/c3ee44164d

Zheng, 1995, J. Electrochem. Soc., 142, 2699, 10.1149/1.2050077

Shao, 2016, ACS Appl. Mater. Interfaces, 8, 28592, 10.1021/acsami.6b08354

Du, 2013, ACS Appl. Mater. Interfaces, 5, 7405, 10.1021/am4017335

https://www.usgs.gov/

Koza, 2012, Chem. Mater., 24, 3567, 10.1021/cm3012205

Sa, 2013, J. Mater. Chem. A, 1, 9992, 10.1039/c3ta11917c

Zhang, 2013, Nanoscale, 5, 6826, 10.1039/c3nr01735d

Liu, 2015, RSC Adv., 5, 39075, 10.1039/C5RA05706J

Yao, 2015, Angew. Chem., Int. Ed., 54, 8722, 10.1002/anie.201502836

Singh, 2015, ACS Appl. Mater. Interfaces, 7, 442, 10.1021/am506450c

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Lu, 2013, J. Mater. Chem. A, 1, 12053, 10.1039/c3ta12912h

Zhuang, 2014, Adv. Mater., 26, 3950, 10.1002/adma.201400336

Kanan, 2010, J. Am. Chem. Soc., 132, 13692, 10.1021/ja1023767

Feng, 1997, Nature, 388, 735, 10.1038/41937

Zhao, 2013, J. Am. Chem. Soc., 135, 1201, 10.1021/ja310566z

Liu, 2015, J. Am. Chem. Soc., 137, 2820, 10.1021/ja5129154

Diazmorales, 2015, ACS Catal., 5, 5380, 10.1021/acscatal.5b01638

Li, 2016, Inorg. Chem. Front., 3, 175, 10.1039/C5QI00187K

Carr, 1987, J. Chem. Soc., 1877

Jiang, 2011, J. Mater. Chem., 21, 3818, 10.1039/c0jm03830j

Zheng, Coord. Chem. Rev., 10.1016/j.ccr.2017.07.002

Chen, 2009, Angew. Chem., Int. Ed., 48, 4816, 10.1002/anie.200900639

Xiao, 2017, J. Mater. Chem. B, 5, 5234, 10.1039/C7TB00180K

Xu, 2005, Phys. B, 370, 84, 10.1016/j.physb.2005.08.043

Xu, 2006, Cryst. Growth, 286, 108, 10.1016/j.jcrysgro.2005.09.040

Kong, 2004, Chem. Mater., 16, 3020, 10.1021/cm030442k

Frost, 2002, Spectrochim. Acta, Part A, 58, 2861, 10.1016/S1386-1425(02)00034-3

Yang, 2005, Angew. Chem., Int. Ed., 44, 598, 10.1002/anie.200461859

Belik, 2007, Inorg. Chem., 46, 8684, 10.1021/ic7008418

Wang, 2014, RSC Adv., 4, 340, 10.1039/C3RA45977B

Carling, 1995, Inorg. Chem., 34, 3917, 10.1021/ic00119a013

Yuan, 2008, J. Chem. Eng. Data, 53, 1066, 10.1021/je700385x

Zeng, 2012, CrystEngComm, 14, 3008, 10.1039/c2ce06514b

Pedersen, 2013, Nature, 496, 533, 10.1038/nature12042

Masquelier, 2013, Chem. Rev., 113, 6552, 10.1021/cr3001862

Feng, 1977, J. Solid State Chem., 131, 160, 10.1006/jssc.1997.7390

Chippindale, 1999, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 55, 845, 10.1107/S010827019900414X

Pang, 2013, Nanoscale, 5, 503, 10.1039/C2NR32597G

Pang, 2012, Nanoscale, 4, 5946, 10.1039/c2nr31208e

Shao, 2016, ACS Appl. Mater. Interfaces, 8, 28592, 10.1021/acsami.6b08354

Wang, 2013, Int. J. Electrochem. Sci., 8, 3768, 10.1016/S1452-3981(23)14430-0

Li, 2016, J. Mater. Sci., 51, 9946, 10.1007/s10853-016-0151-x

Pang, 2015, Nano Energy, 15, 303, 10.1016/j.nanoen.2015.04.034

Pang, 2013, Nanoscale, 5, 5752, 10.1039/c3nr01460f

Sundaram, 2015, Dalton Trans., 44, 20108, 10.1039/C5DT03394B

Pang, 2013, ChemPlusChem, 78, 546, 10.1002/cplu.201300015

Zhao, 2016, Sci. Rep., 6, 17613, 10.1038/srep17613

Pang, 2013, J. Solid State Electrochem., 17, 1383, 10.1007/s10008-013-2007-5

Raju, 2015, Sci. Rep., 5, 17629, 10.1038/srep17629

Pang, 2015, Nano Energy, 17, 339, 10.1016/j.nanoen.2015.07.030

Zhao, 2013, CrystEngComm, 15, 5950, 10.1039/c3ce40712h

Li, 2015, Mater. Lett., 152, 25, 10.1016/j.matlet.2015.03.053

Zhang, 2015, J. Alloys Compd., 651, 214, 10.1016/j.jallcom.2015.08.121

Wei, 2015, Part. Part. Syst. Charact., 32, 831, 10.1002/ppsc.201500018

Xu, 2011, Chem. – Eur. J., 17, 384, 10.1002/chem.201000691

Omar, 2016, RSC Adv., 6, 76298, 10.1039/C6RA15111F

Secchiaroli, 2015, J. Mater. Chem. A, 3, 11807, 10.1039/C5TA00976F

Minakshi, 2016, Nanoscale, 8, 11291, 10.1039/C6NR01179A

Liu, 2016, J. Energy Chem., 25, 601, 10.1016/j.jechem.2016.03.002

Pang, 2013, Part. Part. Syst. Charact., 30, 287, 10.1002/ppsc.201200147

Gao, 2014, Dalton Trans., 43, 17000, 10.1039/C4DT02831G

Wei, 2015, Chem. – Asian J., 10, 1731, 10.1002/asia.201500335

Bendi, 2016, Adv. Energy Mater., 6, 1501833, 10.1002/aenm.201501833

Chen, 2016, ACS Appl. Mater. Interfaces, 8, 23114, 10.1021/acsami.6b07640

Zhang, 2017, J. Mater. Chem. A, 5, 8155, 10.1039/C7TA02454A

Liu, 2016, Electrochim. Acta, 201, 142, 10.1016/j.electacta.2016.03.145

Chen, 2014, ACS Appl. Mater. Interfaces, 6, 4514, 10.1021/am500294m

Zhu, 2013, J. Mater. Chem. A, 1, 2118, 10.1039/C2TA00669C

Han, 2014, J. Mater. Chem. A, 2, 13016, 10.1039/C4TA01795A

Wang, 2015, J. Mater. Chem. A, 3, 20727, 10.1039/C5TA05839B

Fan, 2012, J. Mater. Chem., 22, 16376, 10.1039/c2jm32241b

Zhu, 2013, J. Mater. Chem. A, 1, 2118, 10.1039/C2TA00669C