Sự điều chỉnh của ion kim loại và nucleotide guanine đối với tương tác của tác nhân kích thích trong các thụ thể serotonin 1A đôi từ hồi hải bò
Tóm tắt
Từ khóa
#5-HT1A receptors #bovine hippocampus #agonist binding #metal ions #guanine nucleotide #G-proteinsTài liệu tham khảo
Albert, P. R., Zhou, Q.-Y., Van Tol, H. H. M., Bunzow, J. R., and Civelli, O. (1990). Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol. Chem. 265:5825–5832.
Artigas, F., Romero, L., De Montigny, C., and Blier, P. (1996). Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 19:378–383.
Banerjee, P., Berry-Kravis, E., Bonafede-Chhabra, D., and Dawson, G. (1993). Heterologous expression of the serotonin 5-HT1A receptor in neural and non-neural cell lines. Biochem. Biophys. Res. Commun. 192:104–110.
Battaglia, G., Shannon, M., and Titeler, M. (1984). Guanyl nucleotide and divalent cation regulation of cortical S2 serotonin receptors. J. Neurochem. 45:1213–1219.
Belmaker, R. H., Bersudsky, Y., Agam, G., Levine, J., and Kofman, O. (1996). How does lithium work on manic depression. Annu. Rev. Med. 47:47–56.
Bjørkum, A. A., and Ursin, R. (1996). Sleep/waking effects following intrathecal administration of the 5-HT1A agonist 8-OH-DPAT alone and in combination with the putative 5-HT1A antagonist NAN-190 in rats. Brain Res. Bull. 39:373–379.
Blier, P., De Montigny, C., and Tardif, D. (1987). Short-term lithium treatment enhances responsiveness of postsynaptic 5-HT1A receptors without altering 5-HT autoreceptor sensitivity: an electrophysiological study in the rat brain. Synapse 1:225–232.
Blier, P., De Montigny, C., and Chaput, Y. (1990). A role for the serotonin system in the mechanism of action of antidepressant treatments: Preclinical evidence. J. Clin. Psychiatry 51:14–20.
Blume, A. J. (1978). Interaction of ligands with the opiate receptors of brain membranes: regulation by ions and nucleotides. Proc. Natl. Acad. Sci. USA 75:1713–1717.
Boess, F. G., and Martin, I. L. (1994). Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317.
Bond, R. A., Leff, P., Johnson, T. D., Milano, C. A., Rockman, H. A., McMinn, T. R., Appasundaram, S., Hyek, M. F., Kenakin, T. P., Allen, A. F., and Lefkowitz, R. J. (1995). Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374:272–276.
Bremner, D. H., Ringan, N. S., and Wishart, G. (1997). Modeling of the agonist binding site of serotonin human 5-HT1A, 5-HT1Dα and 5-HT1Dβ receptors. Eur. J. Med. Chem. 32:59–69.
Bruns, R. F., Lawson-Wendling, K., and Pugsley, T. A. (1983). A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Biochem. 132:74–81.
Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J. C., and De Maeyer, E. (1995). Aggressive behavior and altered amounts of brain serotonin and nonrepinephrine in mice lacking MAOA. Science 268:1763–1766.
Ceresa, B. P., and Limbird, L. E. (1994). Mutation of an aspartate residue highly conserved among G-protein-coupled receptors results in nonreciprocal disruption of α2-adrenergic receptor-G-protein interactions. J. Biol. Chem. 269:29557–29564.
Chanda, P. K., Minchin, M. C. W., Davis, A. R., Greenberg, L., Reilly, Y., McGregor, W. H., Bhat, R., Lubeck, M. D., Mizutani, S., and Hung, P. P. (1993). Identification of residues important for ligand binding to the human 5-hydroxytryptamine1A serotonin receptor. Mol. Pharmacol. 43:516–520.
Charest, A., Wainer, B. H., and Albert, P. R. (1993). Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J. Neurosci. 13:5164–5171.
Chattopadhyay, A., and Harikumar, K. G. (1996). Dependence of critical micelle concentration of a zwitteriónic detergent on ionic strength: implications in receptor solubilization. FEBS Lett. 391:199–202.
Chattopadhyay, A., Rukmini, R., and Mukherjee, S. (1996). Photophysics of a neurotransmitter: Ionization and spectroscopic properties of serotonin. Biophys. J. 71:1952–1960.
Childers, S. R., and Snyder, S. H. (1980). Differential regulation by guanine nucleotides of opiate agonist and antagonist receptor interactions. J. Neurochem. 34:583–593.
Chojnacka-Wojcik, E., Tatarczynska, E., Golembiowska, K., and Przegalinski, E. (1991). Involvement of 5-HT1A receptors in the antidepressant-like activity of gepirone in the forced swimming test in rats. Neuropharmacology 30:711–717.
Clapham, D. E. (1996). The G-protein nanomachine. Nature 379:297–299.
Cornfield, L. J., and Nelson, D. L. (1991). Biochemistry of 5-hydroxytryptamine receptor subtypes: Coupling to second messenger systems. In Peroutka, S. J. (ed.), Serotonin Receptor Subtypes: Basic and Clinical Aspects, Wiley-Liss, New York, pp. 81–102.
Crabbe, J. C., Phillips, T. J., Feller, D. J., Hen, R., Wenger, C. D., Lessov, C. N., and Schafer, G. L. (1996). Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nature Genet. 14:98–101.
Creese, I., Prosser, T., and Snyder, S. H. (1978). Dopamine receptor binding: Specificity, localization and regulation by ions and guanyl nucleotides. Life Sci. 23:495–500.
De Lean, A., Stadel, J. M., and Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled to β-adrenergic receptor. J. Biol. Chem. 255:7108–7117.
DeVinney, R., and Wang, H. H. (1995). Mg2+ enhances high affinity [3H]-8-hydroxy-2-(di-N-propylamino) tetralin binding and guanine nucleotide modulation of serotonin-1a receptors. J. Receptor Signal Transduct. Res. 15:757–771.
Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergood, W., Rands, E., and Strader, C. D. (1987). Structural features required for ligand binding to the β-adrenergic receptor. EMBO J. 6:3269–3275.
Donnelly, D., and Findlay, J. B. C. (1994). Seven-helix receptors: Structure and modelling. Curr. Opin. Str. Biol. 4:582–589.
Dourish, C. T., Ahlenius, S., and Hutson, P. H. (1987). Brain 5-HT 1A Receptors, Ellis Horwood, Chichester, U.K.
Dumuis, A., Sebben, M., and Bockaert, J. (1988). Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol. Pharmacol. 33:178–186.
El Mestikawy, S., Riad, M., Laporte, A. M., Verge, D., Daval, G., Gozlan, H., and Hamon, M. (1990). Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci. Lett. 118:189–192.
Emerit, M. B., El Mestikawy, S., Gozlan, H., Rouot, B., and Hamon, M. (1990). Physical evidence of the coupling of solubilized 5-HT1A binding sites with G regulatory proteins. Biochem. Pharmacol. 39:7–18.
Emerit, M. B., Miquel, M. C., Gozlan, H., and Hamon, M. (1991). The GTP-insensitive component of high affinity [3H]8-hydroxy-2-(di-n-propylamino)tetralin in the rat hippocampus corresponds to an oxidized state of the 5-hydroxytryptamine1A receptor. J. Neurochem. 56:1705–1716.
Ernsberger, P., and U'Prichard, D. C. (1987). Modulation of agonist and antagonist interactions at kidney α1-adrenoceptors by nucleotides and metal ions. Eur. J. Pharmacol. 133:165–176.
Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358–360.
Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142.
Gozlan, H., Thibault, S., Laporte, A.-M., Lima, L., and Hamon, M. (1995). The selective 5-HT1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur. J. Pharmacol. 288:173–186.
Hall, M. D., Gozlan, H., Emerit, M. B., El Mestikawy, S., Pichat, L., and Hamon, M. (1986). Differentiation of pre-and post-synaptic high affinity serotonin receptor binding sites using physico-chemical parameters and modifying agents. Neurochem. Res. 11:891–912.
Harrington, M. A., and Peroutka, S. J. (1990). Modulation of 5-hydroxytryptamine1A receptor density by non-hydrolyzable GTP analogues. J. Neurochem. 54:294–299.
Harrington, M. A., Oksenberg, D., and Peroutka, S. J. (1988). 5-Hydroxytryptamine1A receptors are linked to a Gi-adenylate cyclase complex in rat hippocampus. Eur. J. Pharmacol. 154:95–98.
Heath, M. J. S., and Hen, R. (1995). Genetic insights into serotonin function. Curr. Biol. 5:997–999.
Hen, R. (1992). Of mice and flies: Commonalities among 5-HT receptors. Trends Pharmacol. Sci. 13:160–165.
Higashijima, T., Ferguson, K. M., Sternweis, P. C., Smigel, M. D., and Gilman, A. G. (1987). Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 262:762–766.
Ho, B. Y., Karschin, A., Branchek, T., Davidson, N., and Lester, H. A. (1992). The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: a site directed mutation study. FEBS Lett. 312:259–262.
Hoffman, B. B., and Lefkowitz, R. J. (1980). Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation. Annu. Rev. Pharmacol. Toxicol. 20:581–608.
Horstman, D. A., Brandon, S., Wilson, A. L., Guyer, C. A., Cragoe, E. J., and Limbird, L. E. (1990). An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 265:21590–21595.
Hulme, E. C. (1990). Receptor binding studies, a brief outline. In Hulme, E. C. (ed.), Receptor-Effector Coupling: A Practical Approach, IRL Press, New York, pp. 203–215.
Insel, P. A., and Motulsky, H. J. (1984). A hypothesis linking intracellular sodium, membrane receptors, and hypertension. Life Sci. 34:1009–1013.
Jacobs, B. L., and Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72:165–229.
Khawaja, X., Evans, N., Reilly, Y., Ennis, C., and Michin, M. C. W. (1995). Characterisation of the binding of [3H]WAY-100635, a novel 5-hydroxytryptamine1A receptor antagonist, to rat brain. J. Neurochem. 64:2716–2726.
Kia, H. K., Miquel, M.-C., Brisorgueil, M.-J., Daval, G., Riad, M., El Mestikawy, S., Hamon, M., and Verge, D. (1996). Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J. Comp. Neurol. 365:289–305.
Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowicz, R. J., and Caron, M. G. (1987). An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79.
Kong, H., Raynor, K. Yasuda, K., Bell, G. I., and Reisine, T. (1993). Mutation of an aspartate ar residue 89 in somatostatin receptor subtype 2 prevents Na+ regulation of agonist binding but does not alter receptor-G protein association. Mol. Pharmacol. 44:380–384.
Lam, S., Shen, Y., Nguyen, T., Messier, T. L., Brann, M., Comings, D., George, S. R., and O'Dowd, B. F. (1996). A serotonin receptor gene (5HT1A) variant found in a Tourette's syndrome patient. Biochem. Biophys. Res. Commun. 219:853–858.
Lee, C.-Y., Akera, T., and Brody, T. M. (1977). Effect of Na+, K+, Mg++ and Ca++ on the saturable binding of [3H]dihydromorphine and [3H]naloxone in vitro. J. Pharmacol. Exp. Ther. 202:166–173.
Lefkowitz, R. J. (1993). G-protein coupled receptors: Turned on to ill effect. Nature 365:604–604.
Limbird, L. E. (1981). Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem. J. 195:1–13.
Lopez-Ibor, J. J. (1988). The involvement of serotonin in psychiatric disorders and behavior. Br. J. Psychiatry 153(Suppl. 3):26–39.
Marcinkiewicz, M., Verge, D., Gozlan, H., Pichat, L., and Hamon, M. (1984). Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res. 291:159–163.
McPherson, G. A. (1985). Analysis of radioligand binding experiments. J. Pharmacol. Meth. 14:213–228.
Middlemiss, D. N., and Fozard, J. R. (1983). 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90:151–153.
Mongeau, R., Welner, S. A., Quirion, R., and Suranyi-Cadotte, B. E. (1992). Further evidence for differential affinity states of the serotonin1A receptor in rat hippocampus. Brain Res. 590:229–238.
Morishima, Y., Nakata, Y., and Segawa, T. (1989). Comparison of the effects of ions and GTP on substance P binding to membrane-bound and solubilized specific sites. J. Neurochem. 53:1428–1434.
Nenonene, E. K., Radja, F., Carli, M., Grondin, L., and Reader, T. A. (1994). Heterogeneity of cortical and hippocampal 5-HT1A receptors: A reappraisal of homogenate binding with 8-[3H]hydroxydipropylaminotetralin. J. Neurochem. 62:1822–1834.
Newman-Tancredi, A., Wootton, R., and Strange, P. G. (1992). High-level stable expression of recombinant 5-HT1A5-hydroxytryptamine receptors in Chinese hamster ovary cells. Biochem. J. 285:933–938.
Ohno, M., and Watanabe, S. (1996). Blockade of 5-HT1A receptors compensates loss of hippocampal cholinergic neurotransmission involved in working memory of rats. Brain Res. 736:180–188.
Ostrowski, J., Kjelsberg, M. A., Caron, M. G., and Lefkowitz, R. J. (1992). Mutagenesis of the β2-adrenergic receptor: How structure elucidates function. Annu. Rev. Pharmacol. Toxicol. 32:167–183.
Palacios, J. M., Waeber, C., Hoyer, D., and Mengod, G. (1990). Distribution of serotonin receptors. Ann. N.Y. Acad. Sci. 600:36–52.
Pasternak, G. W., Snowman, A. M., and Snyder, S. H. (1975). Selective enhancement of [3H]opiate agonist binding by divalent cations. Mol. Pharmacol. 11:735–744.
Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981). Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36:220–226.
Peroutka, S. J. (1988). 5-Hydroxytryptamine receptor subtypes. Annu. Rev. Neurosci. 11:45–60.
Peroutka, S. J. (1993). 5-Hydroxytryptamine receptors. J. Neurochem. 60:408–416.
Peroutka, S. J. (1994). 5-Hydroxytryptamine receptors in vertebrates and invertebrates: Why are there so many? Neurochem. Int. 25:533–536.
Peroutka, S. J., and Howell, T. A. (1994). The molecular evolution of G protein-coupled receptors: Focus on 5-hydroxytryptamine receptors. Neuropharmacology 33:319–324.
Peroutka, S. J., and Snyder, S. H. (1979). Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 16:687–699.
Quitterer, U., AbdAlla, S., Jarnagin, K., and Muller-Esterl, W. (1996). Na′ ions binding to the bradykinin B2 receptor suppress agonist-independent receptor activation. Biochemistry 35:13368–13377.
Sadee, W., Pfeiffer, A., and Herz, A. (1982). Opiate receptor: Multiple effects of metal ions. J. Neurochem. 39:659–667.
Saudou, F., and Hen, R. (1994). 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem. Int. 25:503–532.
Saudou, F., Amara, D. A., Dierich, A., LeMeur, M., Ramboz, S., Segu, L., Buhot, M.-C., and Hen, R. (1994). Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878.
Schlegel, J. R., and Peroutka, S. J. (1986). Nucleotide interactions with 5-HT1A binding sites directly labeled by [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT). Biochem. Pharmacol. 35:1943–1949.
Shiozaki, K., and Haga, T. (1992). Effects of Magnesium ion on the interaction of atrial muscarinic acetylcholine receptors and GTP-binding regulatory proteins. Biochemistry 31:10634–10642.
Sibley, D. R., and Creese, I. (1983). Regulation of ligand binding to pituitary D-2 dopaminergic receptors: Effects of divalent cations and functional group modification. J. Biol. Chem. 258:4957–4965.
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.
Strader, C. D., Sigall, I. S., Register, R. B., Candelore, M. R., Rands, E., and Dixon, R. A. F. (1987). Identification of residues required for ligand binding to the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84:4384–4388.
Strader, C. D., Fong, T. M., Graziano, M. P., and Tota, M. R. (1995). The family of G-protein-coupled receptors. FASEB J. 9:745–754.
Strosberg, A. D. (1991). Structure/function relationship of proteins belonging to the family of receptors coupled to GTP-binding proteins. Eur. J. Biochem. 196:1–10.
Sundaram, H., Newman-Tancredi, A., and Strange, P. G. (1993). Characterization of recombinant human serotonin 5-HT1A receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 45:1003–1009.
Sundaram, H., Turner, J. D., and Strange, P. G. (1995). Characterisation of recombinant serotonin 5-HT1A receptors expressed in chinese hamster ovary cells: The agonist [3H]lisuride labels free receptor and receptor coupled to G protein. J. Neurochem. 65:1909–1916.
Sylte, I., Edvardsen, O., and Dahl, S. G. (1993). Molecular dynamics of the 5-HT1d receptor and ligands. Protein Eng. 6:691–700.
Sylte, I., Edvardsen, O., and Dahl, S. G. (1996). Molecular modelling of UH-301 and 5-HT1d receptor interactions. Protein Eng. 9:149–160.
Tecott, L. H., Sun, L. M., Akana, S. F., Strack, A. M., Lowenstein, D. H., Dallman, M. F., and Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546.
Tsai, B. S., and Lefkowitz, R. J. (1978). Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets. Mol. Pharmacol. 14:540–548.
U'Prichard, D. C., and Snyder, S. H. (1978). Guanyl nucleotide influences on 3H-ligand binding to α-noradrenergic receptors in calf brain membranes. J. Biol. Chem. 253:3444–3452.
Verge, D., Daval, G., Marcinkiewicz, M., Patey, A., El-Mestikawy, S., Gozlan, H., and Hamon, M. (1986). Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J. Neurosci. 6:3474–3482.
Wang, C.-D., Gallaher, T. K., and Shih, J. C. (1993). Site-directed mutagenesis of the serotonin 5-hydroxytryptamine2 receptor: Identification of amino acids necessary for ligand binding and receptor activation. Mol. Pharmacol. 43:931–940.
Werling, L. L., Zarr, G. D., Brown, S. R., and Cox, B. M. (1985). Opioid binding to rat and guinea-pig neural membranes in the presence of physiological cations at 37°C. J. Pharmacol. Exp. Ther. 233:722–728.
Werling, L. L., Brown, S. R., Puttfarcken, P., and Cox, B. M. (1986). Sodium regulation of agonist binding at opioid receptors. II. Effects sodium replacement on opioid binding to guinea-pig cortical membranes. Mol. Pharmacol. 30:90–95.
Wilkinson, L. O., and Dourish, C. T. (1991). Serotonin and animal behavior. In Peroutka, S. J. (ed.), Serotonin Receptor Subtypes: Basic and Clinical Aspects, Wiley-Liss, New York, pp. 147–210.
Wreggett, K. A., and De Lean, A. (1984). The ternary complex model: Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol. Pharmacol. 26:214–227.
Yabaluri, N., and Medzihradsky, F. (1997). Regulation of μ-opioid receptor in neural cells by extracellular sodium. J. Neurochem. 68:1053–1061.
Yeh, S.-R., Fricke, R. A., and Edwards, D. H. (1996). The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271:366–369.