Metal-Free Decomposition of Formic Acid on Pristine and Carbon-Doped Boron Nitride Fullerene: A DFT Study

Journal of Cluster Science - Tập 26 - Trang 595-608 - 2015
Mehdi D. Esrafili1, Roghaye Nurazar1
1Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran

Tóm tắt

The adsorption and decomposition of formic acid (HCOOH) on pristine and carbon doped B12N12 nanocage are investigated using density functional theory calculations. Both dehydration and dehydrogenation pathways of HCOOH are considered. Based on the present theoretical results, B11N12C nanocage can effectively decompose the HCOOH molecule with the C atom as an activation site, and the corresponding activation energy barriers for the dehydrogenation and dehydration are significantly lowered, compared with the undoped B12N12 case. The catalytic activity of the B11N12C for formic acid dehydrogenation is explored and the calculated barrier (28.2 kcal/mol) of the reaction HCOO → CO2 + H is lower than those on the traditional noble metals. Our results reveal that the low cost B11N12C can be used as an effective metal-free catalyst for HCOOH decomposition at ambient temperature.

Tài liệu tham khảo

L. Schlapbach and A. Zuttel (2001). Nature 414, 353. A. T. M. Seayad and D. T. M. Antonelli (2004). Adv. Mater. 16, 765. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan (2002). Nature 420, 302. W. Q. Deng, X. Xu, and W. A. Goddard (2004). Phys. Rev. Lett. 92, 166103. Z. X. Yang, Y. D. Xia, and R. Mokaya (2007). J. Am. Chem. Soc. 129, 1673. M. Dixit, T. A. Maark, and S. Pal (2011). Int. J. Hydrogen Energy 36, 10816. K. Gopalsamy, M. Prakash, R. Mahesh Kumar, and V. Subramanian (2012). Int J Hydrogen Energy 37, 9730. S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz (2007). Catal. Today 120, 246. E. Durgun, S. Ciraci, and T. Yildirim (2008). Phys. Rev. B 77, 085405. R. Coontz and B. Hanson (2004). Science 305, 957. W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, and E. J. Lavernia (2009). J. Phys. Chem. C 113, 2028. P. K. Chattaraj, S. Bandaru, and S. Mondal (2011). J. Phys. Chem. A 115, 187. O. V. Pupysheva, A. A. Farajian, and B. I. Yakobson (2008). Nano Lett. 8, 767. K. Gopalsamy and V. Subramanian (2014). Int. J. Hydrogen Energy 37, 2549. S. Nachimuthu, P. J. Lai, and J. C. Jiang (2014). Carbon 73, 132. E. Iglesia and M. Boudart (1983). J. Catal. 81, 214. M. Ojeda and E. Iglesia (2009). Angew. Chem.-Int. Ed. 48, 4800. X. Li, X. Ma, F. Shi, and Y. Deng (2010). ChemSusChem 3, 71. B. Loges, A. Boddien, H. Junge, and M. Beller (2008). Angew. Chem. Int. Ed. 47, 3962. C. Fellay, P. J. Dyson, and G. Laurenczy (2008). Angew. Chem. Int. Ed. 47, 3966. S. Fukuzumi, T. Kobayashi, and T. Suenobu (2008). ChemSusChem 1, 827. T. C. Johnson, D. J. Morris, and M. Wills (2010). Chem. Soc. Rev. 39, 81. T. P. Rieckborn, E. Huber, E. Karakoc, and M. H. Prosenc (2010). Eur. J. Inorg. Chem. 2010, 4757. M. R. Columbia, A. M. Crabtree, and P. A. Thiel (1992). J. Am. Chem. Soc. 114, 1231. D. A. Bulushev, S. Beloshapkin, and J. R. H. Ross (2010). Catal. Today 154, 7. C. Hu, S. W. Ting, K. Y. Chan, and W. Huang (2012). Int. J. Hydrogen Energy 37, 15956. A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, and M. Beller (2011). Science 333, 1733. S. W. Ting, S. Cheng, K. Y. Tsang, N. van der Laak, and K. Y. Chan (2009). Chem. Commun. 7333. S. W. Ting, C. Hu, J. K. Pulleri, and K. Y. Chan (2012). Ind. Eng. Chem. Res. 51, 4861. C. Hu, S. W. Ting, J. Tsui, and K. Y. Chan (2012). Int. J. Hydrogen Energy 37, 6372. K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith, and S. C. E. Tsang (2011). Nature Nanotech. 6, 302. A. Cuesta, G. Cabello, M. Osawa, and C. Gutiérrez (2012). ACS Catal. 2, 728. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966. D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441. J. Beheshtian, H. Behzadi, M. D. Esrafili, B. B. Shirvani, and N. L. Hadipour (2010). Struct. Chem. 21, 903. G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag, and T. Frauenheim (1997). Chem. Phys. Lett. 268, 352. T. Oku and A. Nishiwaki (2004). Sci. Technol. Adv. Mater. 5, 635. C. Tang, Y. Bando, X. Ding, S. Qi, and D. Golberg (2002). J. Am. Chem. Soc. 124, 14550. S. H. Jhi and Y. K. Kwon (2004). Phys. Rev. B 69, 245407. N. Koi and T. Oku (2004). Solid State Commun. 131, 121. M. D. Esrafili and R. Nurazar (2014). Appl. Surf. Sci. 314, 90. R. J. Baierle, T. M. Schmidt, and A. Fazzio (2007). Solid State Commun. 142, 49. Y. J. Cho, C. H. Kim, H. S. Kim, J. Park, H. C. Choi, H. J. Shin, G. Gao, and H. S. Kang (2009). Chem. Mater. 21, 136. H. Wu, X. Fan, and J. L. Kuo (2012). Int. J. Hydrogen Energy 37, 14336. M. D. Esrafili and R. Nurazar (2014). Superlattices Microst. 67, 54. M. D. Esrafili and R. Nurazar (2014). Comput. Mater. Sci. 92, 172. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347. Y. Zhao and D. G. Truhlar (2008). Acc. Chem. Res. 41, 157. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899. Y. Chen, H. X. Wang, J. X. Zhao, X. G. Wang, G. H. Cai, Y. H. Ding, and X. Z. Wang (2012). J. Nanopart. Res. 14, 675. N. R. Avery, B. H. Toby, A. B. Anton, and W. H. Weinberg (1982). Surface Sci. 122, L574. S. Haq, J. G. Love, H. E. Sanders, and D. A. King (1995). Surf. Sci. 325, 230. M. D. Esrafili and R. Nurazar (2014). Superlattices Microst. 75, 17. X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, and T. Lu (2008). Chem. Commun. 3540. S. Zhou, C. Qian, and X. Chen (2011). Catal. Lett. 141, 726. J. L. Davis and M. A. Barteau (1991). Surf. Sci. 256, 50.