Sản Xuất Kim Loại Thêm: Tổng Quan Về Các Tính Chất Cơ Học

Annual Review of Materials Research - Tập 46 Số 1 - Trang 151-186 - 2016
John J. Lewandowski1, Mohsen Seifi1
1Department of Materials Science and Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio 44106;,

Tóm tắt

Bài viết này tổng hợp dữ liệu đã được công bố về các tính chất cơ học của các vật liệu kim loại sản xuất bằng phương pháp cộng thêm. Các kỹ thuật sản xuất cộng thêm được sử dụng để tạo ra các mẫu trong bài báo này bao gồm nấu chảy bằng giường bột (ví dụ: EBM, SLM, DMLS) và nạp năng lượng có hướng (ví dụ: LENS, EBF3). Mặc dù hiện tại chỉ có một số lượng hạn chế các hệ thống hợp kim kim loại có sẵn cho sản xuất cộng thêm (ví dụ: Ti-6Al-4V, TiAl, thép không gỉ, Inconel 625/718, và Al-Si-10Mg), phần lớn thông tin về các tính chất cơ học đã được công bố tập trung vào Ti-6Al-4V. Tuy nhiên, các bảng tổng hợp các tính chất cơ học đã được công bố và/hoặc các số liệu chính cũng được bao gồm cho mỗi hợp kim được liệt kê ở trên, được phân loại theo kỹ thuật cộng thêm được sử dụng để tạo ra dữ liệu. Các giá trị đã được công bố cho các tính chất cơ học thu được từ độ cứng, kéo nén, độ bền gãy, sự phát triển rạn nứt mỏi, và mệt mỏi cao được bao gồm cho các điều kiện as-built, được xử lý nhiệt, và/hoặc HIP, khi có sẵn. Các ảnh hưởng của hướng thử nghiệm/hướng xây dựng đối với các tính chất, khi có sẵn, cũng được cung cấp, cùng với thảo luận về nguồn gốc tiềm năng (ví dụ: cấu trúc kết tinh, sự thay đổi vi cấu trúc, khuyết tật) của sự dị hướng trong các tính chất. Các khuyến nghị cho công việc bổ sung cũng được cung cấp.

Từ khóa


Tài liệu tham khảo

10.1016/S0007-8506(07)63240-5

10.1007/s11665-014-0958-z

Dutta B, 2014, Adv. Mater. Res., 1019, 19, 10.4028/www.scientific.net/AMR.1019.19

10.1108/13552540910960262

10.1016/j.jmbbm.2009.10.006

10.1016/S1005-0302(12)60016-4

10.1007/s11837-014-1007-y

10.1016/j.phpro.2012.10.056

10.1016/j.ijfatigue.2012.11.011

10.1007/s11837-015-1810-0

11. Collins PC, Brice DA, Samimi P, Ghamarian I, Fraser HL. 2016. Microstructural control of additively manufactured materials. Annu. Rev. Mater. Res. 46:63–91

12. Ackelid U, Svensson M. 2009. Additive manufacturing of dense metal parts by electron beam melting. In Proceedings of Materials Science and Technology Conference (MS&T), pp. 2711–19. Novelty, OH: ASM Int.

10.1007/978-3-319-48127-2_27

14. Christensen A, Kircher R, Lippincott A. 2007. Qualification of electron beam melted (EBM) Ti6Al4V-ELI for orthopaedic applications. In Proceedings from the Materials & Processes for Medical Devices Conference, pp. 48–53. Novelty, OH: ASM Int.

10.4028/www.scientific.net/JBBBE.22.63

10.1108/13552540910960262

10.1016/j.addma.2014.08.002

18. Gong X, Anderson T, Chou K. 2012. Review on powder-based electron beam additive manufacturing technology. In Proceedings of the ASME International Symposium on Flexible Automation, pp. 507–15. New York: ASME

Gong X, 2013, Solid Freeform Fabrication Proceedings, 459

10.1557/jmr.2014.125

10.1016/j.jmatprotec.2014.11.010

10.1016/j.msea.2013.02.064

10.1007/s11661-014-2396-9

10.1088/2051-672X/3/1/014003

10.1016/j.actamat.2014.05.037

10.1016/S0921-5093(02)00518-X

10.1016/j.jmapro.2014.08.005

10.3390/ma4101776

10.1016/j.jmatprotec.2011.03.013

10.1080/17452759.2015.1008643

10.1007/s11661-015-2976-3

10.1007/s00170-014-6594-9

10.1179/1432891713Z.000000000302

10.1016/j.addma.2014.12.002

10.3139/147.110036

Hrabe N, 2012, Solid Freeform Fabrication Proceedings, 1045

10.1002/jbm.a.31540

Puebla K., 2012, Mater. Sci. Appl., 3, 259

10.1007/s11665-013-0658-0

Rafi K, 2012, Solid Freeform Fabrication Proceedings, 526

10.1108/13552541211250391

10.1016/j.matchar.2011.12.008

10.1002/adem.201400542

Svensson M., 2013, Proceedings from the Materials and Processes for Medical Devices Conference, 119

45. Svensson M, Ackelid U, Ab A. 2010. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. In Proceedings of Materials & Processes for Medical Devices Conference, pp. 189–94. Novelty, OH: ASM Int.

10.1016/j.promfg.2015.09.026

Zhao H, 2015, TMS Proceedings, 429

10.1007/s11837-015-1298-7

10.1016/0166-3615(95)00030-3

10.1016/j.matdes.2014.05.064

10.1108/13552541011083371

10.1115/1.4028539

Gong H, 2014, Solid Freeform Fabrication Proceedings

10.1088/2051-672X/3/1/014001

10.1016/j.proeng.2015.01.510

10.1016/S0924-0136(01)00584-2

10.1007/s11837-001-0068-x

Kobryn PA, 2001, Solid Freeform Fabrication Proceedings, 179

10.1016/S0924-0136(02)00865-8

60. Schnitzer M, Lisý M, Hudák R, Živ J. 2015. Experimental measuring of the roughness of test samples made using DMLS technology from the titanium alloy Ti-6Al-4V. In IEEE International Symposium on Applied Machine Intelligence and Informatics, 13th, pp. 31–36

10.1016/j.msea.2006.04.117

10.1016/S0924-0136(03)00283-8

Simonelli M, 2012, Solid Freeform Fabrication Proceedings, 480

10.1557/jmr.2014.166

10.1016/j.actamat.2010.02.004

10.1117/12.2079475

10.1016/j.addma.2014.12.008

10.1016/j.matdes.2003.10.004

10.1016/j.matdes.2003.09.009

10.1016/j.actamat.2014.11.028

10.1016/S0026-0657(01)80108-9

10.1016/j.jallcom.2014.12.234

10.1038/srep05357

10.1007/s11661-012-1444-6

10.1016/j.phpro.2010.08.087

10.1179/174328405X21003

10.1016/S1359-6462(00)00408-5

10.1088/1757-899X/26/1/012004

10.1007/s11837-014-1288-1

10.1016/j.actamat.2014.12.054

10.1179/1362171815Y.0000000050

10.1007/s11661-004-0094-8

10.1007/s11661-004-0095-7

10.4028/www.scientific.net/AMM.760.515

10.1080/10426914.2015.1026351

10.1007/s11837-014-1273-8

10.1016/j.jmatprotec.2014.06.005

10.1557/jmr.2014.204

10.1115/1.4028513

10.1299/mej.2014smm0049

10.1016/j.jmatprotec.2014.07.017

10.1016/j.engfracmech.2014.03.008

10.1007/s00170-010-2631-5

10.1016/j.matdes.2006.08.008

10.1016/j.actamat.2014.09.028

10.1016/j.jmatprotec.2013.04.012

10.1016/j.jallcom.2015.03.075

10.1016/j.msea.2014.07.051

10.1115/1.4028509

10.1007/s13632-013-0073-9

10.1016/j.actamat.2013.04.002

10.1007/s11661-011-0748-2

10.1016/j.jmst.2014.09.020

10.1002/adem.201500158

10.1111/ffe.12286

10.1016/j.actamat.2015.04.035

10.1016/j.msea.2014.10.003

10.1016/j.jallcom.2014.06.172

10.1016/j.msea.2013.09.025

10.1002/9781118495223.ch35

10.1557/jmr.2014.199

10.1557/PROC-753-BB2.6

10.1016/j.scriptamat.2014.10.011

10.1016/j.jmatprotec.2015.02.013

10.1016/j.jmatprotec.2015.02.023

10.1016/j.msea.2015.01.063

10.1016/j.pmatsci.2015.03.002

10.1179/1743284714Y.0000000702

10.1108/RPJ-03-2013-0028

10.1016/j.scriptamat.2014.05.021

10.1016/j.matdes.2014.07.006

10.1115/1.4028620

123. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. 2014. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4:77–86

10.1007/s13632-014-0168-y

125. Taminger K, Hafley R. 2003. Electron beam freeform fabrication: a rapid metal deposition process. In Proc. Annu. Automot. Compos. Conf., 3rd, pp. 9–10

10.1002/9781119093466.ch56

Gu J, 2014, Solid Freeform Fabrication Proceedings, 451

10.1016/j.matlet.2015.06.046

10.1016/j.scriptamat.2014.11.037

130. ISO/ASTM. 2013. Standard terminology for additive manufacturing-coordinate systems and test methodologies. ASTM/ISO Stand. 52921

131. ASTM. 2015. Guide for orientation and location dependence mechanical properties for metal additive manufacturing. ASTM Work Item WK49229

Moylan S, 2015, Solid Freeform Fabrication Proceedings, 1504

133. Moylan S, Slotwinski J. 2014. Assessment of guidelines for conducting round robin studies in additive manufacturing. In Proceedings of ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing, Vol. 57, pp. 82–85. Berkeley, CA: NIST

10.1016/j.addma.2014.09.004

Beuth J, 2013, Solid Freeform Fabrication Proceedings, 655

Gockel J, 2013, Solid Freeform Fabrication Proceedings, 666

10.1016/j.addma.2015.03.005

Soylemez E, 2010, Solid Freeform Fabrication Proceedings, 571

Montgomery C, 2015, Solid Freeform Fabrication Proceedings, 1195

140. Seifi M, Christiansen D, Beuth JL, Harrysson O, Lewandowski JJ. 2016. Process mapping, fracture and fatigue behavior of Ti-6Al-4V produced by EBM additive manufacturing. In Proceedings of World Conference on Titanium, 13th, pp. 1373–77. Warrendale, PA/Hoboken, NJ: TMS/Wiley

141. Greitemeier D, Dalle Donne C, Syassen F, Eufinger J, Melz T. 2016. Effect of surface roughness on fatigue performance of additive manufactured Ti-6Al-4V. Mater. Sci. Technol. In press

10.1115/1.4025773

10.1016/j.actamat.2015.06.036

10.1016/j.msea.2015.06.069

10.1016/j.msea.2013.02.065

10.1016/j.matchar.2008.07.006

10.1017/S1431927615006674

10.1016/j.matdes.2015.07.147

Morgan L, 2003, Solid Freeform Fabrication Proceedings, 433

150. Rekedal KD, Liu D. 2015. Fatigue life of selective laser melted and hot isostatically pressed Ti-6Al-4V absent of surface machining. Presented atAIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 56th

10.1016/j.addma.2014.12.006

10.1016/j.jmatprotec.2015.01.025

10.1016/j.msea.2014.01.041

10.1557/jmr.2014.157

10.1016/j.msea.2014.07.086

10.1016/j.jallcom.2012.07.022

10.1016/j.jmbbm.2008.05.004

10.1007/s11661-011-0731-y

10.1108/13552540710776142

10.1179/1743290114Y.0000000092

10.1016/j.biomaterials.2005.07.041

10.1016/j.msea.2013.04.099

10.1016/j.phpro.2012.10.056

10.1007/s12598-009-0104-5

10.1007/s11665-010-9670-9

10.1007/s11661-008-9634-y

10.1016/j.proeng.2015.08.007

10.1007/s11837-000-0028-x

10.1016/S0261-3069(99)00078-3

10.1557/PROC-625-9

10.1016/j.jmatprotec.2014.04.002

Löber L, 2011, Solid Freeform Fabrication Proceedings, 547

10.1108/13552541311302932

174. Sercombe TB, Li X. 2016. Selective laser melting of aluminium and aluminium metal matrix composites: review. Mater. Technol. In press

10.1016/j.msea.2014.01.012

10.1016/j.actamat.2015.05.017

10.1016/j.matdes.2014.09.044

10.3390/ma6030856

10.1016/j.phpro.2012.10.059

10.1007/s00170-014-6150-7

Kircher R, 2009, Solid Freeform Fabrication Proceedings, 428

10.1134/S0031918X15060101

183. Terrazas CA, Mireles J, Gaytan SM, Morton PA, Hinojos A, et al. 2016. Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology. Int. J. Adv. Manuf. Technol. In press

10.1016/j.msea.2014.05.092

10.1016/j.msea.2015.02.051

10.1007/s11665-011-0009-y

10.1016/j.jmatprotec.2005.05.005

10.1016/j.msea.2007.05.079

189. Bird RK, Hibberd J. 2009. Tensile properties and microstructure of Inconel 718 fabricated with electron beam freeform fabrication (EBF3). Tech. Rep., NASA

10.1007/s11661-009-9949-3

10.1007/s10853-009-3691-5

10.1111/ffe.12303

10.1002/adem.201100233

Becker TH, 2015, S. Afr. J. Ind. J., 26, 1

195. Svensson M. 2009. Ti6Al4V manufactured with electron beam melting (EBM): mechanical and chemical properties. In Proceedings from the Materials & Processes for Medical Devices Conference, pp. 189–94. Novelty, OH: ASM Int.

Boyer R, 1994, Materials Properties Handbook: Titanium Alloys

197. Seifi M, Salem A, Satko D, Shaffer J, Lewandowski JJ. 2016. Fracture resistance and fatigue behavior of Ti-6Al-4V additively manufactured by electron beam melting (EBM): role of microstructure heterogeneity, defect distribution and post-processing. Int. J. Fatigue. In press

198. Seifi M, Ghamarian I, Samimi P, Collins PC, Lewandowski JJ. 2016. Microstructure and mechanical properties of Ti-48Al-2Cr-2Nb manufactured via electron beam melting. In Proceedings of World Conference on Titanium, 13th, pp. 1317–22. Warrendale, PA/Hoboken, NJ: TMS/Wiley

199. Seifi M, Salem A, Satko D, Ackelid U, Lewandowski JJ. 2016. Effects of microstructural heterogeneity and post-processing on mechanical properties of Ti-48Al-2Cr-2Nb additively manufactured by electron beam melting (EBM). Intermetallics. Under review

10.1016/j.intermet.2014.10.005

10.1016/j.ijfatigue.2015.12.003

202. Fodran E, Walker K. 2015. Surface finish enhancement for the electron beam direct digital manufacturing of Ti-6Al-4V alloy structural components. Tech. Rep., Armament Research, Development and Engineering Center, Weapons Software Engineering Center, Benét Lab.

203. Seifi M, Lewandowski JJ. 2016. Microstructure and mechanical properties of additively manufactured alloys. Prog. Mater. Sci. In preparation

Filippini M, 2015, Mater. Res. Soc. Symp. Proc., 1, 3

10.1017/S1431927615006674

10.3390/met5042289

10.1016/j.msea.2015.03.079

208. Biamino S, Klöden B, Weißgärber T, Kieback B, Ackelid U. 2014. Titanium aluminides for automotive applications processed by electron beam melting. In Proceedings of Metal Powder Industries Federation (MPIF), pp. 96–103. Princeton, NJ: MPIF

10.1002/9781118998489.ch26

10.1016/j.proeng.2014.10.096

Ge W, 2014, Solid Freeform Fabrication Proceedings, 501

10.1016/j.intermet.2014.01.004

10.1520/JAI104293

10.1016/j.intermet.2013.01.019

10.1007/s13632-011-0001-9

10.1016/j.intermet.2010.11.017

10.1016/j.proeng.2011.04.605

10.1002/9781118062173.ch57

10.1016/j.actamat.2009.11.032

220. Patriarca L. 2010. Fatigue crack growth of a gamma titanium aluminide alloy. In Youth Symposium on Experimental Solid Mechanics, 9th, pp. 36–39

Sabbadini S, 2010, TMS Proceedings, 267

10.1155/2007/34737

10.1016/j.matchar.2016.01.012

10.1016/j.intermet.2015.07.005

10.1016/j.msea.2015.07.056

10.1016/j.msea.2015.12.026