Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors

H. Ferhati1,2, F. Djeffal2, L.B. Drissi3,4
1ISTA, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria
2LEA, Department of Electronics, University of Batna 2, Batna, 05000, Algeria
3LPHE, Modeling & Simulations, Faculty of Science, Mohammed V University in Rabat, MB, 1014 RP, Rabat, Morocco
4Centre Physique Mathématique (CPM), Faculty of Science, Rabat, Morocco

Tài liệu tham khảo

Sun, 2015, Single-chip microprocessor that communicates directly using light, Nature, 528, 534, 10.1038/nature16454 Atabaki, 2018, Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip, Nat. Photonics, 556, 349 Xu, 2014, High responsivity and gate tunable graphene MoS2 hybrid phototransistor, Small, 10, 2300, 10.1002/smll.201303670 Ma, 2018, IR polymers and phototransistors, J. Mater. Chem., 6, 13049, 10.1039/C8TC03917H Colace, 2014, Investigation of static and dynamic characteristics of optically controlled field effect transistors, J. Lightwave Technol., 32, 2233, 10.1109/JLT.2014.2322978 Ferhati, 2018, Boosting the optical performance and commutation speed of phototransistor using SiGe/Si/Ge tunneling structure, Mater. Res. Express, 5, 10.1088/2053-1591/aac756 Wang, 2020, Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications, Chem. Soc. Rev., 49, 653, 10.1039/C9CS00431A Ferhati, 2021, Giant responsivity of a new InGaZnO ultraviolet thin-film phototransistor based on combined dual gate engineering and surface decorated Ag nanoparticles aspects, Sens. Actuators, A., 318, 112523, 10.1016/j.sna.2020.112523 Liu, 2014, Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2-nanowire composite and their application in photodetectors, Adv. Mater., 26, 7399, 10.1002/adma.201401732 Chang, 2012, High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric, Appl. Phys. Lett., 101, 261112, 10.1063/1.4773307 Pak, 2017, Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer, Nanotechnology, 28, 475206, 10.1088/1361-6528/aa9054 Yu, 2019, Enhanced UV-visible detection of InGaZnO phototransistors via CsPbBr3 quantum dots, Semicond. Sci. Technol., 34, 25013, 10.1088/1361-6641/ab4c9e Wang, 2020, Light response behaviors of amorphous In–Ga–Zn–O thin-film transistors via in situ interfacial hydrogen doping modulation, RSC Adv., 10, 3572, 10.1039/C9RA09646A Zhai, 2019, Investigation of photocurrent transient variation in Au nanoparticles decorated IGZO phototransistor, Phys. E: Low-Dimens. Syst. Nanostructures., 113, 92, 10.1016/j.physe.2019.04.003 Ferhati, 2020, Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface, Appl. Surf. Sci., 529, 147069, 10.1016/j.apsusc.2020.147069 Mahdi, 2018, High performance and low-cost UV–Visible–NIR photodetector based on tin sulphide nanostructures, J. Alloys Compd., 735, 2256, 10.1016/j.jallcom.2017.10.203 Zheng, 2017, An enhanced UV–Vis–NIR and flexible photodetector based on electrospun ZnO nanowire array/PbS quantum dots film heterostructure, Adv. Sci., 4, 1600316, 10.1002/advs.201600316 Dhanabalan, 2016, Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials, Nanoscale, 8, 6410, 10.1039/C5NR09111J Sarkar, 2018, Self-powered highly enhanced broad wavelength (UV to visible) photoresponse of ZnO@ ZnO1−xSx@ ZnS core–shell heterostructures, J. Colloid Interface Sci., 523, 245, 10.1016/j.jcis.2018.03.110 Yoo, 2020, High photosensitive Indium−Gallium−Zinc oxide thin-film phototransistor with a Selenium capping layer for visible-light detection, ACS Appl. Mater. Interfaces, 12, 10673, 10.1021/acsami.9b22634 Na, 2019, A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbIxBr3-x perovskite and In–Ga–Zn–O semiconductor double-layer, J. Mater. Chem. C., 7, 14223, 10.1039/C9TC04757C Wei, 2020, Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection, Adv. Mater., 32, 1907527, 10.1002/adma.201907527 Chen, 2020, Structure-property relation in organic-metal oxide hybrid phototransistors, ACS Appl. Mater. Interfaces, 12, 15430, 10.1021/acsami.9b22165 Yang, 2016, MoS2–InGaZnO heterojunction phototransistors with broad spectral responsivity, ACS Appl. Mater. Interfaces, 8, 8576, 10.1021/acsami.5b11709 Ferhati, 2021, Enhanced infrared photoresponse of a new InGaZnO TFT based on Ge capping layer and high-k dielectric material, Superlattice. Microst., 156, 106967, 10.1016/j.spmi.2021.106967 Hwang, 2016, Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photo-inverter for near-infrared detection and imaging with high photogain, NPG Asia Mater., 8, 233, 10.1038/am.2015.137 Pei, 2015, High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor, IEEE Electron. Device Lett., 36, 44, 10.1109/LED.2014.2368773 Hu, 2019, Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band, Light Sci. Appl., 106 Ouyang, 2015, Metastable Ge nanocrystalline in SiGe matrix for photodiode, Appl. Surf. Sci., 349, 387, 10.1016/j.apsusc.2015.05.034 Lin, 2010, Metal-oxide-semiconductor SiGe/Si quantum dot infrared photodetectors with delta doping in different positions, Thin Solid Films, 518, 237, 10.1016/j.tsf.2009.10.097 Cariou, 2018, Low temperature epitaxial growth of SiGe absorber for thin film heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 30, 1706262 Matsumura, 2021, Growth of SiGe thin films with uniform and non-uniform Si concentration profiles on insulating substrates by high-speed continuous wave laser annealing, Mater. Sci. Semicond. Process., 134, 106024, 10.1016/j.mssp.2021.106024 Wang, 2017, Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range, Opt Express, 25, 18502, 10.1364/OE.25.018502 Pandey, 2018, Optimized Ge1-xSnx/Ge multiple-quantum-well heterojunction phototransistors for high-performance SWIR photodetection, IEEE Sensor. J., 18, 5842, 10.1109/JSEN.2018.2842107 Morales-Acevedo, 2011, Analytical model for the photocurrent of solar cells based on graded band-gap CdZnTe thin films, Sol. Energy Mater. Sol. Cells, 95, 2837, 10.1016/j.solmat.2011.05.045 Morales-Acevedo, 2009, Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells, Sol. Energy Mater. Sol. Cells, 93, 41, 10.1016/j.solmat.2008.02.015 Hsu, 2018, Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles, ACS Appl. Energy Mater., 76, 393 Farmani, 2019, Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range, J. Opt. Soc. Am. B, 36, 401, 10.1364/JOSAB.36.000401 Bastús, 2016, Quantifying the sensitivity of multipolar (dipolar, quadrupolar and octapolar) surface plasmon resonances in silver nanoparticles: the effect of size, composition and surface coating, Langmuir, 12, 290, 10.1021/acs.langmuir.5b03859 Imenabadi, 2020, Importance of separating contacts from the photosensitive layer in heterojunction phototransistors, Superlattice. Microst., 148, 106713, 10.1016/j.spmi.2020.106713 Moldovan, 2016, A compact model and direct parameters extraction techniques for amorphous gallium-indium-zinc-oxide thin film transistors, Solid State Electron., 126, 81, 10.1016/j.sse.2016.09.011 Yakuphanoglu, 2011, Photosensitivity n-channel ZnO phototransistor for optoelectronic applications: modeling of ZnO TFT, Microelectron. Reliab., 51, 2200, 10.1016/j.microrel.2011.06.007 Chen, 2016, A physics-based model of threshold voltage for amorphous oxide semiconductor thin-film transistors, AIP Adv., 6 Cerdeira, 2012, Modeling the behavior of amorphous oxide thin film transistors before and after bias stress, Microelectron. Reliab., 52, 2532, 10.1016/j.microrel.2012.04.017 Ghittorelli, 2014, Accurate analytical physical modeling of amorphous InGaZnO thin-film transistors accounting for trapped and free charges, IEEE Trans. Electron. Dev., 61, 4105, 10.1109/TED.2014.2361062 Wasapinyokul, 2011, Origin of the threshold voltage shift of organic thin-film transistors under light illumination, J. Appl. Phys., 109, 10.1063/1.3575334 Sze, 2007 2012 Ferhati, 2016, Role of optimized grooves surface -textured front glass in improving TiO2 thin film UV photodetector performance, IEEE Sensor. J., 16, 5618, 10.1109/JSEN.2016.2574302 Singha, 2016, Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity, Superlattice. Microst., 91, 62, 10.1016/j.spmi.2015.12.036 Todorov, 2017, Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material, Nat. Commun., 8, 682, 10.1038/s41467-017-00582-9 Ferhati, 2019, Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering, Superlattice. Microst., 129, 176, 10.1016/j.spmi.2019.03.027 Xu, 2021, Multiobjective multifactorial immune algorithm for multiobjective multitask optimization problems, Appl. Soft Comput., 107, 107399, 10.1016/j.asoc.2021.107399 Djeffal, 2011, Multi-objective genetic algorithms based approach to optimize the electrical performances of the gate stack double gate (GSDG) MOSFET, J. Comput. Electron., 42, 661 Ferhati, 2017, A novel high-performance self-powered ultraviolet photodetector: concept, analytical modeling and analysis, Superlattice. Microst., 112, 480, 10.1016/j.spmi.2017.10.005 Fang, 2015, Multiobjective robust design optimization of fatigue life for a truck cab, Reliab. Eng. Syst. Saf., 135, 1, 10.1016/j.ress.2014.10.007