Metaheuristic Techniques for Detection of Optic Disc in Retinal Fundus Images

3D Research - Tập 9 - Trang 1-22 - 2018
Jyotika Pruthi1, Shaveta Arora2, Kavita Khanna1
1Deparment of Computer Science and Engineering, The NorthCap University, Gurgaon, India
2Deparment of Electrical, Electronics and Communication Engineering, The NorthCap University, Gurgaon, India

Tóm tắt

Eye diseases like glaucoma and diabetic retinopathy are known to be the thieves of eye-sight that are responsible for causing the vision loss worldwide. Automatic detection of such diseases with the help of the digital color fundus photography helps in early diagnosis and treatment. From the fundus images, optic disc is required to be analyzed to diagnose the disease. In this paper, a technique has been proposed for locating optic disc through metaheuristic techniques namely Ant Colony Optimization algorithm, Bacterial Foraging Optimization, Firefly algorithm, Cuckoo Search algorithm and Krill Herd algorithm. A comparison has been made amongst all of them and also with existing disc detection techniques. The bacterial foraging algorithm has shown the best results as it has obtained 99.55% accuracy with DiaRetDB1 database, 100% accuracy with HEI-MED database, 100% with DRIVE database and 98% with STARE database.

Tài liệu tham khảo

Abdullah, A. S., Özok, Y. E., & Rahebi, J. (2018). A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Medical & Biological Engineering & Computing. https://doi.org/10.1007/s11517-018-1840-1. Abdullah, M., Fraz, M. M., & Barman, S. A. (2016). Localization and segmentation of optic disc in retinal images using Circular Hough transform and Grow Cut algorithm. PeerJ, 4, e2003. https://doi.org/10.7717/peerj.2003. Abed, S., Al-Roomi, S. A., & Al-Shayeji, M. (2016). Effective optic disc detection method based on swarm intelligence techniques and novel pre-processing steps. Applied Soft Computing, 49, 146–163. https://doi.org/10.1016/j.asoc.2016.08.015. Alshayeji, M., Al-Roomi, S. A., & Abed, S. (2017). Optic disc detection in retinal fundus images using gravitational law-based edge detection. Medical & Biological Engineering & Computing, 55, 935–948. https://doi.org/10.1007/s11517-016-1563-0. Aquino, A., Gegúndez-Arias, M. E., & Marín, D. (2010). Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging, 29, 1860–1869. https://doi.org/10.1109/TMI.2010.2053042. Bharkad, S. (2017). Automatic segmentation of optic disk in retinal images. Biomedical Signal Processing and Control, 31, 483–498. https://doi.org/10.1016/j.bspc.2016.09.009. Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial Foraging Optimization Algorithm: Theoretical foundations, analysis, and applications. Foundations of Computational Intelligence (pp. 23–55). Berlin: Springer. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243–278. https://doi.org/10.1016/j.tcs.2005.05.020. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26, 29–41. https://doi.org/10.1109/3477.484436. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17, 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010. Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., et al. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16, 216–226. https://doi.org/10.1016/j.media.2011.07.004. Hoover, A., & Goldbaum, M. (2003). Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical Imaging, 22, 951–958. https://doi.org/10.1109/TMI.2003.815900. Hsiao, H., Liu, C., Yu, C.-Y., Kuo, S., & Yu, S. (2012). A novel optic disc detection scheme on retinal images. Expert Systems with Applications, 39, 10600–10606. https://doi.org/10.1016/j.eswa.2012.02.157. Jing, T., Weiyu, Y. & Shengli, X. (2008). An ant colony optimization algorithm for image edge detection. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE (pp. 751–756). Kauppi, T., Kalesnykiene, V., Kamarainen, J-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kalviainen, H. & Pietila, J. (2007) The DIARETDB1 diabetic retinopathy database and evaluation protocol. In Proceedings of the British Machine Vision Conference 2007. British Machine Vision Association (pp. 15.1–15.10) [accessed 2018, August 17]. Kavitha, G., & Ramakrishnan, S. (2010). An approach to identify optic disc in human retinal images using Ant Colony Optimization method. Journal of Medical Systems, 34, 809–813. https://doi.org/10.1007/s10916-009-9295-4. Kumar, V. & Sinha, N. (2013) Automatic optic disc segmentation using maximum intensity variation. In IEEE 2013 Tencon–Spring. IEEE (pp. 29–33). Mareli, M., & Twala, B. (2018). An adaptive Cuckoo search algorithm for optimisation. Applied Computing and Informatics, 14, 107–115. https://doi.org/10.1016/j.aci.2017.09.001. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076. Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22, 52–67. https://doi.org/10.1109/MCS.2002.1004010. Pereira, C., Gonçalves, L., & Ferreira, M. (2013). Optic disc detection in color fundus images using ant colony optimization. Medical & Biological Engineering & Computing, 51, 295–303. https://doi.org/10.1007/s11517-012-0994-5. Rahebi, J., & Hardalaç, F. (2016). A new approach to optic disc detection in human retinal images using the firefly algorithm. Medical & Biological Engineering & Computing, 54, 453–461. https://doi.org/10.1007/s11517-015-1330-7. Roychowdhury, S., Koozekanani, D. D., Kuchinka, S. N., & Parhi, K. K. (2016). Optic disc boundary and vessel origin segmentation of fundus images. IEEE Journal of Biomedical and Health Informatics, 20, 1562–1574. https://doi.org/10.1109/JBHI.2015.2473159. Salazar-Gonzalez, A., Kaba, D., Li, Yongmin, & Liu, Xiaohui. (2014). Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics, 18, 1874–1886. https://doi.org/10.1109/JBHI.2014.2302749. Sinthanayothin, C., Boyce, J. F., Cook, H. L., & Williamson, T. H. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology, 83, 902–910. https://doi.org/10.1136/bjo.83.8.902. Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R., & Evans, J. (2012). Prevalence of diabetic retinopathy in various ethnic groups: A worldwide. Perspective, 57, 347–370. https://doi.org/10.1016/j.survophthal.2012.01.004. Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23, 501–509. https://doi.org/10.1109/TMI.2004.825627. Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70–79. https://doi.org/10.1016/j.jocs.2017.02.006. Walter, T., Klein, J., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 21, 1236–1243. https://doi.org/10.1109/TMI.2002.806290. Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Frome: Luniver Press. Yang, XS. & Deb, S. (2009) Cuckoo search via Lévy flights. In 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009—Proceedings 210–214. https://doi.org/10.1109/nabic.2009.5393690. Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1, 36. https://doi.org/10.1504/IJSI.2013.055801. Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. Graphics gems (pp. 474–485). Amsterdam: Elsevier.