Metagenomic Insights into the Gut Microbiota of Eudrilus eugeniae (Kinberg) and Its Potential Roles in Agroecosystem

Samrendra Singh Thakur1, Azhar Rashid Lone2, Sailu Yellaboina3, Subodh Tambat4, Ajar Nath Yadav5, S. K. Jain2, Shweta Yadav2
1Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
2Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
3Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
4Department of Life Sciences and Healthcare, Persistent Systems Limited, Pune, India
5Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Sirmour, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aira M, Bybee S, Pérez-Losada M, Domínguez J (2015) Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures. FEMS Microbiol Ecol 91:fiv117. https://doi.org/10.1093/femsec/fiv117

Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM (2010) Gut wall bacteria of earthworms: a natural selection process. ISME J 4:357–366. https://doi.org/10.1038/ismej.2009.124

Pass DA, Morgan AJ, Read DS, Field D, Weightman AJ, Kille P (2015) The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ Microbiol 17:1884–1896. https://doi.org/10.1111/1462-2920.12712

Bi QF, Jin BJ, Zhu D, Jiang YG, Zheng BX, O’Connor P, Yang XR, Richter A, Lin XY, Zhu YG (2021) How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment? Ecotoxicol Environ Saf 224:112643. https://doi.org/10.1016/j.ecoenv.2021.112643

Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, Prasanna R, Saxena AK, Nain L (2015) Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiol Res 175:48–56. https://doi.org/10.1016/j.micres.2015.03.003

Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. https://doi.org/10.1038/nrgastro.2012.156

Huang K, Li F, Wei Y, Chen X, Fu X (2013) Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol 150:235–241. https://doi.org/10.1016/j.biortech.2013.10.006

Liu D, Lian B, Wu C, Guo P (2017) A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis 74:21–29. https://doi.org/10.1007/s13199-017-0491-6

Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Springer, Dordrecht, pp 23–33

Dey KK, Talukdar NC, Nongkhlaw FM, Thakuria D (2018) Isolation, characterization and practical significance of cellulose degrading bacteria from the gut wall of two ecologically distinct earthworms. Curr Sci 114:1474–1484

Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189. https://doi.org/10.1146/annurev.micro.61.080706.093139

Jin BJ, Bi QF, Li KJ, Yu QG, Ni L, Lin XY, Zhu YG (2022) Long-term combined application of chemical fertilizers and organic manure shapes the gut microbial diversity and functional community structures of earthworms. Appl Soil Ecol 170:104250. https://doi.org/10.1016/j.apsoil.2021.104250

Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London

Gómez-Brandón M, Aira M, Lores M, Domínguez J (2011) Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes. PLoS ONE 6:1–9. https://doi.org/10.1371/journal.pone.0024786

Rios-Valenciana E, Briones-Gallardo R, Cházaro-Ruiz F, Martínez-Villegas N, Celis B (2017) Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic. J Hazard Mater 339:114–121. https://doi.org/10.1016/j.jhazmat.2017.06.019

Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K (2021) Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 37:1–12. https://doi.org/10.1007/s11274-021-03040-3

Dominguez J, Edwards CA, Dominguez J (2001) The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 45:341–353. https://doi.org/10.1078/0031-4056-00091

Sandoval MC, Veiga M, Hinton J, Klein B (2001) Review of biological indicators for metal mining effluents: a proposed protocol using earthworms. In Proceedings of the 25th annual British Columbia reclamation symposium, Campbell River, British Columbia, pp 67–79

Nguyen NP, Warnow T, Pop M (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Biofilms Microbiomes 2:16004. https://doi.org/10.1038/npjbiofilms.2016.4

Porter TM, Hajibabaei M (2018) Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 27:313–338. https://doi.org/10.1111/mec.14478

Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

Gates GE (1972) Burmese earthworms: an introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans Am Philos Soc 62:1–326

OECD 207 (1984) Earthworm, acute toxicity tests. OECD guideline for testing of chemicals. https://doi.org/10.1787/9789264070042-en

Cai L, Gong X, Sun X, Li S, Yu X (2018) Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0207494

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gilbert JA, Smith G, Gormley N, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ pre-processor. Bioinform 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Edgar RC (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. Biorxiv. https://doi.org/10.1101/074161

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188. https://doi.org/10.1093/nar/gkx295

Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform 16:1–7. https://doi.org/10.1186/s12859-015-0611-3

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. https://doi.org/10.1186/gb-2011-12-6-r60

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

Mongad DS, Chavan NS, Narwade NP, Dixit K, Shouche YS, Dhotre DP (2021) MicFunPred: A conserved approach to predict functional profiles from 16S rRNA gene sequence data. Genomics 113:3635–3643. https://doi.org/10.1016/j.ygeno.2021.08.016

Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MG (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, Wemheuer B (2020) Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome 15:1–12. https://doi.org/10.1186/s40793-020-00358-7

Suyal DC, Soni R, Singh DK, Goel R (2021) Microbiome change of agricultural soil under organic farming practices. Biologia 76:1315–1325. https://doi.org/10.2478/s11756-021-00680-6

Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194. https://doi.org/10.1038/ismej.2014.210

Lupatini M, Korthals GW, de Hollander M, Janssens TK, Kuramae EE (2017) Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol 7:2064. https://doi.org/10.3389/fmicb.2016.02064

Fließbach A, Oberholzer HR, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284. https://doi.org/10.1016/j.agee.2006.05.022

Aizat AM, Roslan MK, Sulaiman WNA, Karam DS (2014) The relationship between soil pH and selected soil properties in 48 years logged-over forest. Int J Environmental Sci 4:1129–1140. https://doi.org/10.6088/ijes.2014040600004

Regar RK, Gaur VK, Bajaj A, Tambat S, Manickam N (2019) Comparative microbiome analysis of two different long-term pesticide contaminated soils revealed the anthropogenic influence on functional potential of microbial communities. Sci Total Environ 681:413–423. https://doi.org/10.1016/j.scitotenv.2019.05.090

Budroni M, Mannazzu I, Zara S, Saba S, Pais A, Zara G (2020) Composition and functional profiling of the microbiota in the casts of Eisenia fetida during vermicomposting of brewers’ spent grains. Biotechnol Rep 25:e00439. https://doi.org/10.1016/j.btre.2020.e00439

Acostamartinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770. https://doi.org/10.1016/j.soilbio.2008.07.022

Li X, Lin Z, Luo C, Bai J, Sun Y, Li Y (2015) Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: evidence of functional bacteria using DNA-stable isotope probing. Soil Biol Biochem 81:168–177. https://doi.org/10.1016/j.soilbio.2014.11.011

Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci 109:8618–8622. https://doi.org/10.1073/pnas.1200231109

Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R (2016) Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mat 301:145–152. https://doi.org/10.1016/j.jhazmat.2015.08.047

Chang X, Sun Y, Zhao L, Li X, Yang S, Weng L, Li Y (2021) Exposure to fomesafen alters the gut microbiota and the physiology of the earthworm Pheretima guillelmi. Chemosphere 284:131290. https://doi.org/10.1016/j.chemosphere.2021.131290

Kasana RC, Pandey CB (2018) Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol 38:141–156. https://doi.org/10.1080/07388551.2017.1312273

Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

Cai S, Dong X (2010) Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Int J Syst Evol Microbiol 60:845–849. https://doi.org/10.1099/ijs.0.014712-0

Li Z, Yang Y, Xia Y, Wu T, Zhu J, Wang Z, Yang J (2019) The succession pattern of bacterial diversity in compost using pig manure mixed with wood chips analyzed by 16S rRNA gene analysis. BioRxiv. https://doi.org/10.1101/674069

Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7:15. https://doi.org/10.1186/s40168-019-0630-9

Maki M, Leung T, Qin W (2009) The prospects of cellulose-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516. https://doi.org/10.7150/ijbs.5.500

Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x

Ransom-Jones E, McCarthy AJ, Haldenby S, Doonan J, McDonald JE (2017) Lignocellulose-degrading microbial communities in landfill sites represent a repository of unexplored biomass-degrading diversity. Msphere 2:e00300-e317. https://doi.org/10.1128/mSphere.00300-17