Khám Phá Dữ Liệu Các Chuỗi rDNA 18S Cho Thấy Rằng "Mọi Thứ Không Có Mặt Ở Mọi Nơi" Đối Với Nấm Glomeromycotan

Annals of Microbiology - Tập 66 - Trang 361-371 - 2015
Haishui Yang1, Yajun Dai1, Mingmin Xu2, Qian Zhang3, Xinmin Bian1, Jianjun Tang4, Xin Chen4
1Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
2College of Life Sciences, Nanjing Agricultural University, Nanjing, China
3Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
4College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China

Tóm tắt

Trong sinh thái vi sinh vật, giả thuyết "mọi thứ đều ở mọi nơi" từ lâu đã gây tranh cãi. Trong nghiên cứu hiện tại, chúng tôi đã thực hiện khai thác dữ liệu cho các chuỗi rDNA 18S của nấm glomeromycotan nhằm kiểm tra giả thuyết này. Các chuỗi rDNA 18S được nhắm mục tiêu sử dụng các đoạn AM1–NS31 đã được truy cập từ GenBank, với tổng cộng 1768 chuỗi được thu thập từ 34 địa điểm trên toàn cầu. Tổng cộng, 229, 330 và 518 đơn vị phân loại hoạt động (OTUs) đã được xác định dựa trên mức độ tương đồng 97%, 98% và 99%, tương ứng. Các OTUs 97% cho thấy một phạm vi địa lý hạn chế của nấm glomeromycotan. Trong số các OTUs, 58.1% là đặc hữu, và 17.9% và 9.2% được tìm thấy tại hai và ba địa điểm, tương ứng. OTU rộng nhất được chia sẻ bởi 17 địa điểm. Phân tích cấu trúc phát sinh chủng loại cho thấy hầu hết các cộng đồng địa phương (26 trên 34) được phân tích thành cụm. Các OTUs có phạm vi chủ nhà rộng hơn có phạm vi địa lý rộng hơn. Một mối quan hệ suy giảm khoảng cách đáng kể đã được tiết lộ mà không phụ thuộc vào môi trường sống. Phân tích cụm cho thấy thành phần nấm không có liên quan đến môi trường sống, trong khi phân tích Fast UniFrac chỉ ra rằng sự phân bố của Glomeromycota bị ảnh hưởng bởi nhiệt độ. Tóm lại, các kết quả này gợi ý rằng nấm glomeromycotan không được phân bố ngẫu nhiên dưới các điều kiện tự nhiên; ngược lại, chúng bị ảnh hưởng bởi thực vật chủ, khả năng phân tán và nhiệt độ. Do đó, sự phân bố của nấm glomeromycotan phản bác giả thuyết rằng "mọi thứ đều có mặt ở mọi nơi."

Từ khóa

#Nấm Glomeromycotan #Sinh thái vi sinh vật #Chuỗi rDNA 18S #Đơn vị phân loại hoạt động (OTUs) #Phân tích cấu trúc phát sinh chủng loại

Tài liệu tham khảo

Baar J, Paradi I, Lucassen ECHET, Hudson-Edwards KA, Redecker D, Roelofs JGM, Smolders AJP (2011) Molecular analysis of AMF diversity in aquatic macrophytes: a comparison of oligotrophic and utra-oligotrophic lakes. Aquat Bot 94:53–61 Bell T, Ager D, Song JI, Newman JA, Thompson IP, Lilley AK, Van Der Gast CJ (2005) Larger islands house more bacterial taxa. Science 308:1884 Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392 Chaudhary V, Lau M & Johnson N (2008) Macroecology of microbes – biogeography of the Glomeromycota. In: Varma A ed. Mycorrhiza: Springer Berlin Heidelberg, 529–563 Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47 Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255 Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T & Wilson A (2010) Geneious v5.1, Available from http://www.geneious.com Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10 Finlay BJ, Esteban GF, Olmo JL, Tyler PA (1999) Global distribution of free-living microbial species. Ecography 22:138–144 Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011) Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol 11:341 Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G, Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol Res 24:1345–1350 Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053 Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556 Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750 Hammer Ø, Harper DAT & Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Available at http://folk.uio.no/ohammer/past/. Accessed May 20, 2009 Heinemeyer A, Ridgway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2004) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Chang Biol 10:52–64 Heino J, Bini LM, Karjalainen SM, Mykra H, Soininen J, Vieira LCG, Diniz JAF (2010) Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119:129–137 Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431 Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384 Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa - area relationship for bacteria. Nature 432:750–753 Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678 Koske R (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79:55–68 Kottek M, Grieser J, Beck C, Bruno R, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263 Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105 Li LF, Li T, Zhang Y, Zhao ZW (2010a) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427 Li T, Li L, Sha T, Zhang H, Zhao Z (2010b) Molecular diversity of arbuscular mycorrhizal fungi associated with two dominant xerophytes in a valley-type savanna, southwest China. Appl Soil Ecol 44:61–66 Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular cellular and taxonomic analysis. Am J Bot 94:1756–1777 Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins Johnson N, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535 Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235 Lozupone C, Hamady M, Knight R (2006) UniFrac - An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinf 7:371 Lugo MA, Ferrero M, Menoyo E, Estevez MC, Sineriz F, Anton A (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south American puna grassland. Microb Ecol 55:705–713 Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112 Noguez AM, Arita HT, Escalante AE, Forney LJ, Garcia-Oliva F, Souza V (2005) Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr 14:241–248 Öpik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876 Pietikainen A, Kytoviita M-M, Husband R, Young JPW (2007) Diversity and persistence of arbuscular mycorrhizas in a low-Arctic meadow habitat. New Phytol 176:691–698 Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164 Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921 Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626 Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266 Rosendahl S, Mcgee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329 Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541 Scotese C (2004) A continental drift flipbook. J Geol 112:729–741 Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press, Inc, San Diego Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144 Usher KM, Fromont J, Sutton DC, Toze S (2004) The Biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 48:167–177 Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JP (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564 Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095 Wang B, Yeun LH, Xue JY, Liu Y, Ane JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525 Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6:e24512 Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155 West B, Brandt J, Holstien K, Hill A, Hill M (2009) Fern-associated arbuscular mycorrhizal fungi are represented by multiple Glomus spp.: do environmental factors influence partner identity? Mycorrhiza 19:295–304 Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561 Wirtz N, Printzen C, Lumbsch HT (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycol Res 112:472–484 Wu BY, Hogetsu T, Isobe K, Ishii R (2007) Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza 17:495–506 Wubet T, Weiss M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycol Res 110:1059–1069 Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50