Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects

Freshwater Biology - Tập 60 Số 5 - Trang 845-869 - 2015
Jani Heino1, Adriano S. Melo2, Tadeu Siqueira3, Janne Soininen4, Sebastian Valanko1,5,6, Luis Maurício Bini2
1Finnish Environment Institute, Natural Environment Centre, Biodiversity, Oulu, Finland
2Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
3Departamento de Ecologia Instituto de Biociências UNESP –Universidade Estadual Paulista Rio Claro SP Brazil
4Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
5International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark
6Tvärminne Zoological Station, University of Helsinki, Hanko, Finland

Tóm tắt

Summary

Metacommunity ecology addresses the situation where sets of local communities are connected by the dispersal of a number of potentially interacting species. Aquatic systems (e.g. lentic versus lotic versus marine) differ from each other in connectivity and environmental heterogeneity, suggesting that metacommunity organisation also differs between major aquatic systems. Here, we review findings from observational field studies on metacommunity organisation in aquatic systems.

Species sorting (i.e. species are ‘filtered’ by environmental factors and occur only at environmentally suitable sites) prevails in aquatic systems, particularly in streams and lakes, but the degree to which dispersal limitation interacts with such environmental control varies among different systems and spatial scales. For example, mainstem rivers and marine coastal systems may be strongly affected by ‘mass effects’ (i.e. where high dispersal rates homogenise communities to some degree at neighbouring localities, irrespective of their abiotic and biotic environmental conditions), whereas isolated lakes and ponds may be structured by dispersal limitation (i.e. some species do not occur at otherwise‐suitable localities simply because sites with potential colonists are too far away). Flow directionality in running waters also differs from water movements in other systems, and this difference may also have effects on the role of dispersal in different aquatic systems.

Dispersal limitation typically increases with increasing spatial distance between sites, mass effects potentially increase in importance with decreasing distance between sites, and the dispersal ability of organisms may determine the spatial extents at which species sorting and dispersal processes are most important.

A better understanding of the relative roles of species sorting, mass effects and dispersal limitation in affecting aquatic metacommunities requires the following: (i) characterising dispersal rates more directly or adopting better proxies than have been used previously; (ii) considering the nature of aquatic networks; (iii) combining correlative and experimental approaches; (iv) exploring temporal aspects of metacommunity organisation and (v) applying past approaches and statistical methods innovatively for increasing our understanding of metacommunity organisation.

Từ khóa


Tài liệu tham khảo

Aho J., 1966, Ecological basis of the distribution of the littoral freshwater molluscs in the vicinity of Tampere, South Finland, Annales Zoologici Fennici, 3, 287

Aho J., 1978, Freshwater snail populations and the equilibrium theory of island biogeography. I. A case study in southern Finland, Annales Zoologici Fennici, 15, 146

10.1111/jbi.12089

10.1016/j.ecocom.2014.08.003

10.1007/s10750-013-1711-6

10.1111/een.12013

10.1007/s10452-013-9450-3

10.1111/jbi.12178

10.1111/j.1442-9993.1998.tb00713.x

Armonies A., 1994, Drifting meio‐ and macrobenthic invertebrates on tidal flats in Königshafen: a review, Helgoland Marine Research, 48, 299

10.1111/j.1466-8238.2011.00681.x

10.1899/09-126.1

10.1111/brv.12000

10.1111/j.1466-8238.2011.00756.x

10.1073/pnas.0611651104

10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2

10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2

Bertness M.D., 2001, Marine Community Ecology

10.1002/aqc.745

10.1146/annurev.ecolsys.32.081501.114016

10.1016/j.ecolmodel.2008.04.001

10.1007/s00442-010-1867-y

10.1046/j.1461-0248.2003.00486.x

10.1111/j.1365-2699.2011.02562.x

10.1016/S0304-3800(01)00501-4

10.1016/j.ecss.2006.01.026

10.1111/j.1442-9993.2010.02183.x

10.1111/j.1365-2656.2010.01668.x

10.1899/10-129.1

10.1016/j.ympev.2006.07.014

10.1111/j.1365-2427.2009.02328.x

10.1073/pnas.1007077107

10.1086/674009

10.1111/j.1600-0587.2013.00329.x

10.1890/12-2053.1

10.1073/pnas.0704350104

10.7208/chicago/9780226101811.001.0001

10.1111/j.1365-2427.2008.02041.x

10.1016/S0304-3800(02)00255-7

10.1126/science.1113281

10.1111/j.1600-0706.2012.20691.x

10.1111/j.1461-0248.2005.00820.x

10.1890/03-3004

10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2

10.1146/annurev.marine.010908.163757

10.1146/annurev-ecolsys-102209-144718

10.1111/j.1461-0248.2012.01794.x

10.1111/j.1600-0587.2010.06462.x

10.1111/j.1600-0706.2011.19563.x

10.1038/nature04534

10.5268/IW-2.4.502

10.1016/j.ecolmodel.2006.02.015

10.1016/j.jembe.2008.07.012

10.1007/s10980-011-9659-2

10.1111/j.1365-2427.2012.02842.x

10.1016/j.biocon.2010.08.013

10.1038/360576a0

10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2

10.2307/3544855

10.1017/S095283690200153X

10.1111/j.1600-0587.2013.00527.x

10.1899/11-012.1

10.1111/icad.12029

10.1007/BF00384297

10.1111/j.1365-2664.2010.01861.x

Giller P.S., 1994, Aquatic Ecology: Scale, Pattern and Process

10.1556/ComEc.11.2010.2.6

Gotelli N.J., 1999, Testing metapopulation models with stream‐fish assemblages, Evolutionary Ecology Research, 1, 835

10.1371/journal.pone.0072237

10.1111/1365-2656.12004

10.1111/j.1461-0248.2006.01007.x

10.1890/1051-0761(2003)013[0108:DPOMII]2.0.CO;2

10.1111/j.1461-0248.2006.00884.x

10.1890/10-0364.1

10.1111/j.1365-2664.2012.02203.x

Gray J.S., 1974, Animal‐sediment relationships, Oceanography and Marine Biology ‐ An Annual Review, 12, 223

10.1111/j.1365-2656.2011.01938.x

10.1002/ece3.834

10.1111/j.1365-2699.2011.02503.x

10.4319/lo.2004.49.4_part_2.1229

10.1111/j.1365-2427.2011.02610.x

10.1111/j.1469-185X.2012.00244.x

10.1007/s00442-012-2451-4

10.1111/j.1600-0706.2009.17778.x

10.1111/j.1600-0706.2011.19715.x

10.1111/fwb.12502

10.2980/i1195-6860-12-1-141.1

10.1007/s10980-005-2377-x

10.1111/j.1365-2311.2008.01012.x

10.1016/j.cois.2014.06.002

10.1111/j.1365-2427.2006.01520.x

10.1111/jbi.12369

10.4319/lo.1997.42.2.0282

10.1890/04-1099

10.1007/s10531-009-9763-7

10.1016/S0065-2504(09)00404-8

Holyoak M., 2005, Metacommunities: Spatial Dynamics and Ecological Communities, 1

10.1111/j.1600-0587.2011.06856.x

Hubbell S.J., 2001, The Unified Neutral Theory of Biodiversity and Biogeography

10.1111/j.1365-2427.2006.01722.x

10.1525/bio.2009.59.7.8

Jackson D.A., 2001, What controls who is where in freshwater fish communities –the roles of biotic, abiotic and spatial factors, Canadian Journal of Fisheries and Aquatic Sciences, 58, 157

10.1007/s10980-009-9442-9

10.1111/j.1365-2427.1988.tb00464.x

10.1007/s10750-004-7452-9

10.1111/j.1466-8238.2007.00312.x

10.1139/f06-138

10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2

10.1111/j.1365-2427.2012.02816.x

10.1111/j.1365-2427.2010.02563.x

10.1038/ismej.2011.177

10.1111/oik.01253

10.1016/B978-0-444-53868-0.50018-6

10.1111/j.1461-0248.2010.01523.x

10.1111/j.1461-0248.2004.00608.x

10.1007/s10021-001-0021-4

10.1093/icesjms/fst112

10.1046/j.1365-2427.2000.00514.x

10.1111/j.1758-2229.2011.00257.x

10.1111/jbi.12160

10.1608/FRJ-1.1.9

10.1016/j.tree.2011.04.009

10.1371/journal.pone.0109581

10.3354/meps324067

MacArthur R.H., 1967, The Theory of Island Biogeography

10.1890/0012-9658(1998)079[2941:IVEITA]2.0.CO;2

10.1111/j.1600-0587.2010.06518.x

10.1016/0022-0981(91)90111-9

10.1038/nrmicro1341

10.1007/978-1-4615-4066-3

10.1098/rspb.2011.2166

10.1186/2046-9063-8-14

10.1672/0277-5212(2007)27[864:HALEFI]2.0.CO;2

10.1111/j.1600-0587.2013.00432.x

10.3354/ame01711

10.1890/06-1538.1

10.1890/11-0037.1

10.1139/cjfas-2013-0092

Mittelbach G., 2012, Community Ecology

10.1111/fwb.12127

10.1016/j.ecolmodel.2008.11.019

10.1111/j.1600-0706.2013.00377.x

10.1086/378857

10.1038/nature02286

10.1111/j.1466-8238.2006.00272.x

10.1016/j.actao.2009.07.002

10.1007/s10750-008-9605-8

10.3354/meps212131

10.1002/aqc.752

10.1016/j.actao.2010.04.002

10.1007/s004420000620

10.1023/A:1017000820646

10.1371/journal.pone.0111227

10.3354/meps048081

10.1016/0169-5347(96)10038-0

10.1890/08-0851.1

10.1111/geb.12115

10.1016/j.aquabot.2006.09.018

10.1111/j.1461-0248.2012.01809.x

Pearson T.H., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanography and Marine Biology ‐ An Annual Review, 16, 229

10.1016/j.jmarsys.2007.10.008

10.1111/fwb.12337

10.1111/j.1466-8238.2009.00506.x

10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

10.1890/11-0494.1

10.1046/j.1365-2427.1999.00466.x

10.1016/j.jembe.2010.04.008

10.1007/s10144-008-0118-0

10.1111/geb.12041

10.1080/11956860.1995.11682263

10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2

10.1046/j.1365-2427.2002.00922.x

10.1046/j.1365-2699.2002.00668.x

10.1098/rspb.2010.1158

10.1086/284880

10.2307/1938333

10.1139/f06-145

10.1139/f01-022

10.1890/0012-9615(1997)067[0109:SOFAAE]2.0.CO;2

10.1111/j.1365-2427.2009.02314.x

10.1017/CBO9780511611223.011

10.1111/j.1600-0587.2012.07053.x

10.1127/1863-9135/2012/0365

10.2307/2845026

10.1007/s00442-008-1174-z

10.1371/journal.pone.0043626

10.1111/j.1600-0587.2011.06875.x

10.1007/978-3-319-06877-0_5

10.1111/j.1600-0587.2009.06105.x

10.2307/1313538

10.1111/j.1758-2229.2011.00308.x

10.1890/13-2228.1

10.2980/1195-6860(2007)14[146:NNADOP]2.0.CO;2

10.4319/lo.2011.56.2.0508

10.1007/s10750-014-1949-7

10.1111/j.0906-7590.2004.03749.x

10.1111/j.1095-8312.1978.tb00013.x

10.1111/j.1095-8312.1978.tb00014.x

10.1093/genetics/105.1.219

10.1139/f85-129

10.1111/j.1365-2427.1986.tb00954.x

10.1111/ecog.00496

10.1111/1574-6941.12195

10.1007/s10750-006-0285-y

10.1111/j.1365-2656.2006.01068.x

10.1111/j.1469-185X.1950.tb00585.x

10.1111/fwb.12387

10.2307/1937251

10.2307/5071

10.1111/j.1600-0587.2012.07339.x

10.1016/j.tree.2008.02.007

10.1111/j.1366-9516.2005.00226.x

10.1016/j.jembe.2009.12.012

10.1016/j.seares.2014.09.001

10.7208/chicago/9780226904146.003.0001

10.1073/pnas.0707200104

10.1139/f80-017

10.1899/12-092.1

Vieira Nicole K.M., 2006, A database of lotic invertebrate traits for North America, U.S. Geological Survey Data Series, 187, 1

10.1890/12-1716.1

10.1146/annurev.ecolsys.27.1.337

10.1371/journal.pone.0045071

10.1007/978-1-4757-3250-4

10.1023/A:1017084217011

10.2307/2389612

10.1111/j.1365-2427.2007.01818.x

10.1046/j.0962-1083.2001.01310.x

10.2307/1941449

10.1016/j.tree.2012.01.007

10.1002/(SICI)1099-0755(199609)6:3<141::AID-AQC189>3.0.CO;2-Z

10.1086/419172