Metacognitive learning approach for online tool condition monitoring

Journal of Intelligent Manufacturing - Tập 30 - Trang 1717-1737 - 2017
Mahardhika Pratama1, Eric Dimla2, Chow Yin Lai3, Edwin Lughofer4
1School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
2Mechanical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
3School of Engineering, RMIT University, Carlton, Australia
4Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Austria

Tóm tắt

As manufacturing processes become increasingly automated, so should tool condition monitoring (TCM) as it is impractical to have human workers monitor the state of the tools continuously. Tool condition is crucial to ensure the good quality of products—worn tools affect not only the surface quality but also the dimensional accuracy, which means higher reject rate of the products. Therefore, there is an urgent need to identify tool failures before it occurs on the fly. While various versions of intelligent tool condition monitoring have been proposed, most of them suffer from a cognitive nature of traditional machine learning algorithms. They focus on the how-to-learn process without paying attention to other two crucial issues—what-to-learn, and when-to-learn. The what-to-learn and the when-to-learn provide self-regulating mechanisms to select the training samples and to determine time instants to train a model. A novel TCM approach based on a psychologically plausible concept, namely the metacognitive scaffolding theory, is proposed and built upon a recently published algorithm—recurrent classifier (rClass). The learning process consists of three phases: what-to-learn, how-to-learn, when-to-learn and makes use of a generalized recurrent network structure as a cognitive component. Experimental studies with real-world manufacturing data streams were conducted where rClass demonstrated the highest accuracy while retaining the lowest complexity over its counterparts.

Tài liệu tham khảo