Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allison, M. J., Dougherty, R. W., Bucklin, J. A., & Snyder, E. E. (1964). Ethanol accumulation in the rumen after overfeeding with readily fermentable carbohydrate. Science, 144, 54–55.
Ametaj, B. N., Bradford, B. J., Bobe, G., Nafikov, R. A., Lu, Y., Young, J. W., et al. (2005). Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Canadian Journal of Animal Science, 85, 165–175.
Andries, J. I., Buysse, F. X., Debrabander, D. L., & Cottyn, B. G. (1987). Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances—a review. Animal Feed Science and Technology, 18, 169–180.
Bertram, H. C., Kristensen, N. B., Malmendal, A., Nielsen, N. C., Brod, R., Andersen, H. J., et al. (2005). A metabolomic investigation of splanchnic metabolism using 1H NMR spectroscopy of bovine blood plasma. Analytica Chimica Acta, 536, 1–6.
Bertram, H. C., Kristensen, N. B., Vestergaard, M., Jensen, S. K., Sehested, J., Nielsen, N. C., et al. (2009). Metabolic characterization of rumen epithelial tissue from dairy calves fed different starter diets using 1H NMR spectroscopy. Livestock Science, 120, 127–134.
Boudonck, K. J., Mitchell, M. W., Wulff, J., & Ryals, J. A. (2010). Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics. doi: 10.1007/s11306-009-0160-8 .
Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.
Bugaut, M. (1987). Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology, 86B, 439–472.
Burlingame, R., & Chapman, P. J. (1983). Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. Journal of Bacteriology, 155, 113–121.
Canadian Council on Animal Care. (1993). Guide to the care and use of experimental animals (2nd ed., Vol. 1). Ottawa: CCAC.
Chesson, A., Provan, G. J., Russell, W. R., Scobbie, L., Richardson, A. J., & Stewart, C. (1999). Hydroxycinnamic acids in the digestive tract of livestock and humans. Journal of the Science of Food and Agriculture, 79, 373–378.
Davis, E. J., & De Ropp, R. S. (1961). Metabolic origin of urinary methylamine in the rat. Nature, 190, 636–637.
Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.
Dumas, M.-E., Barton, R. H., Toye, A., Cloarec, O., Blancher, Ch., Rothwell, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of National Academy of Sciences USA, 103, 12511–12516.
Emmanuel, D. G. V., Dunn, S. M., & Ametaj, B. N. (2008). Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. Journal of Dairy Science, 91, 606–614.
Enomoto, N., Ikejima, K., Yamashina, S., Hirose, M., Shimizu, H., Kitamura, T., et al. (2001). Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcoholism, Clinical and Experimental Research, 25, 51S–54S.
Estruch, R., Nicolás, J. M., Villegas, E., Jonqué, A., & Urbano-Márquez, A. (1993). Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol and Alcoholism, 28, 543–550.
Gould, G. W. (1970). Germination and the problem of dormancy. Journal of Applied Bacteriology, 33, 34–49.
Hashimoto, S., Kawai, Y., & Mutai, M. (1975). In vitro N-nitrosodimethylamine formation by some bacteria. Infection and Immunity, 11, 1405–1406.
Hill, K. J., & Mangan, J. L. (1964). The formation and distribution of methylamine in the ruminant digestive tract. Biochemistry Journal, 93, 39–45.
Hoogenraad, N. J., & Hird, F. J. R. (1970). The chemical composition of rumen bacteria and cell walls from rumen bacteria. British Journal of Nutrition, 24, 119–127.
Iqbal, S., Zebeli, Q., Mazzolari, A., Bertoni, G., Dunn, S. M., et al. (2009). Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. Journal of Dairy Science, 92, 6023–6032.
Jenkins, T. C., & McGuire, M. A. (2006). Major advances in nutrition: impact on milk composition. Journal of Dairy Science, 89, 1302–1310.
Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
Khafipour, E., Li, S., Plaizier, J. C., & Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 75, 7115–7124.
Koppang, N. (1964). An outbreak of toxic liver injury in ruminants. Nord Veterinaermed, 16, 305–322.
Kristensen, N. B., Storm, A., Raun, B. M., Røjen, B. A., & Harmon, D. L. (2007). Metabolism of silage alcohols in lactating dairy cows. Journal of Dairy Science, 90, 1364–1377.
Littell, R. C., Henry, P. R., & Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76, 1216–1231.
Martin, A. K. (1982). The origin of urinary aromatic compounds excreted by ruminants 3. The metabolism of phenolic compounds to simple phenols. British Journal of Nutrition, 48, 497–507.
McAllan, A. B., & Smith, R. H. (1973). Degradation of nucleic acids in the rumen. British Journal of Nutrition, 29, 331–345.
Neill, A. R., Grime, D. W., & Dawson, R. M. (1978). Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochemistry Journal, 170, 529–535.
Nocek, J. E. (1997). Bovine acidosis: implications on laminitis. Journal Dairy Science, 80, 1005–1028.
NRC. (2001). Nutrient requirements of dairy cattle (7th rev. edn). National Academy of Sciences, Washington, DC.
Örlygsson, J., Anderson, R., & Svensson, B. H. (1995). Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2. Antonie van Leeuwenhoek, 68, 273–280.
Pagella, J. H. (1998). Urinary benzylated compounds as potential markers of forage intake and metabolism of their precursors in ruminants. PhD Dissertation, Aberdeen University, UK.
Pruett, B. S., & Pruett, S. B. (2006). An explanation for the paradoxical induction and suppression of an acute phase response by ethanol. Alcohol, 39, 105–110.
Rieu-Lesme, F., Dauga, C., Morvan, B., Bouvet, O. M. M., Grimont, P. A. D., & Doré, J. (1996). Acetogenic sporulating cocci isolated from the rumen. Research in Microbiology, 147, 753–764.
Satter, L. D., & Esdale, W. J. (1968). In vitro lactate metabolism by ruminal ingesta. Applied Microbiology, 16, 680–688.
Saude, E. J., Slupsky, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics, 2, 113–123.
Seo, J. (2005). Information visualization design for multidimensional data: integrating the rank-by-feature framework with hierarchical clustering. Ph.D. Dissertation, University of Maryland.
Slyter, L. L. (1976). Influence of acidosis on rumen function. Journal of Animal Science, 43, 910–929.
Souliotis, V. L., Henneman, J. R., Reed, C. D., Chhabra, S. K., Diwan, B. A., Anderson, L. M., et al. (2002). DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis. Mutation Research, 500, 75–87.
Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Nakamura, M., et al. (2000). Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6, 273–284.
Trent, M. S., Stead, C. M., Tran, A. X., & Hankins, J. V. (2006). Diversity of endotoxin and its impact on pathogenesis. Journal of Endotoxin Research, 12, 205–223.
Turlin, E., Perrotte, M., Danchin, A., & Biville, F. (2001). Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 3, 127–133.
Turlin, E., Sismeiro, O., Le Caer, J. P., Labas, V., Danchin, A., & Biville, F. (2005). 3-phenylpropionate catabolism and the Escherichia coli oxidative stress response. Research in Microbiology, 156, 312–321.
Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. American Chemical Society Chemical Biology, 5, 91–103.
Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.
Wishart, D. S. (2008a). Metabolomics: Applications to food science and nutrition research. Trends in Food Science and Technology, 19, 482–493.
Wishart, D. S. (2008b). Quantitative metabolomics using NMR. Trends in Analytical Chemistry, 27, 228–237.
Wishart, D. S., Lewis, M. J., Morrissey, J. A., Flegel, M. D., Jeroncic, K., Xiong, Y., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 871, 164–173.
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660.
Yu, P., Xin, H., Lu, L., Fan, H., Kazachkov, M., Jiang, Z. J., et al. (2006). Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. American Journal of Pathology, 168, 718–726.