Metabolomics: a search for biomarkers of visceral fat and liver fat content
Tóm tắt
Excess visceral and liver fat are known risk factors for cardiometabolic disorders. Metabolomics might allow for easier quantification of these ectopic fat depots, instead of using invasive and costly tools such as MRI or approximations such as waist circumference. We explored the potential use of plasma metabolites as biomarkers of visceral adipose tissue (VAT) and hepatic triglyceride content (HTGC). We performed a cross-sectional analysis of a subset of the Netherlands Epidemiology of Obesity study. Plasma metabolite profiles were determined using the Biocrates AbsoluteIDQ p150 kit in 176 individuals with normal fasting plasma glucose. VAT was assessed with magnetic resonance imaging and HTGC with proton-MR spectroscopy. We used linear regression to investigate the associations of 190 metabolite variables with VAT and HTGC. After adjustment for age, sex, total body fat, currently used approximations of visceral and liver fat, and multiple testing, three metabolite ratios were associated with VAT. The strongest association was the lysophosphatidylcholines to total phosphatidylcholines (PCs) ratio [− 14.1 (95% CI − 21.7; − 6.6) cm2 VAT per SD of metabolite concentration]. Four individual metabolites were associated with HTGC, especially the diacyl PCs of which C32:1 was the strongest at a 1.31 (95% CI 1.14; 1.51) fold increased HTGC per SD of metabolite concentration. Metabolomics may be a useful tool to identify biomarkers of visceral fat and liver fat content that have added diagnostic value over current approximations. Replication studies are required to validate the diagnostic value of these metabolites.
Tài liệu tham khảo
Abu Bakar, M. H., Sarmidi, M. R., Cheng, K. K., Ali Khan, A., Suan, C. L., Zaman Huri, H., et al. (2015). Metabolomics—the complementary field in systems biology: A review on obesity and type 2 diabetes. Molecular BioSystems, 11, 1742–1774.
Amato, M. C., Giordano, C., Galia, M., Criscimanna, A., Vitabile, S., Midiri, M., et al. (2010). Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care, 33, 920–922.
Bachlechner, U., Floegel, A., Steffen, A., Prehn, C., Adamski, J., Pischon, T., et al. (2016). Associations of anthropometric markers with serum metabolites using a targeted metabolomics approach: Results of the EPIC-potsdam study. Nutr Diabetes, 6, e215.
Bedogni, G., Bellentani, S., Miglioli, L., Masutti, F., Passalacqua, M., Castiglione, A., et al. (2006). The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterology, 6, 33.
Boulet, M. M., Chevrier, G., Grenier-Larouche, T., Pelletier, M., Nadeau, M., Scarpa, J., et al. (2015). Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. American Journal of Physiology Endocrinology and Metabolism, 309, E736–E746.
Cole, L. K., Vance, J. E., & Vance, D. E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta (BBA), 1821, 754–761.
Cuthbertson, D. J., Weickert, M. O., Lythgoe, D., Sprung, V. S., Dobson, R., Shoajee-Moradie, F., et al. (2014). External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. European Journal of Endocrinology, 171, 561–569.
de Mutsert, R., den Heijer, M., Rabelink, T. J., Smit, J. W., Romijn, J. A., Jukema, J. W., et al. (2013). The Netherlands epidemiology of obesity (NEO) study: Study design and data collection. European Journal of Epidemiology, 28, 513–523.
Fang, H., Berg, E., Cheng, X., & Shen, W. (2018). How to best assess abdominal obesity. Current Opinion in Clinical Nutrition and Metabolic Care, 21, 1.
Feldman, A., Eder, S. K., Felder, T. K., Kedenko, L., Paulweber, B., Stadlmayr, A., et al. (2017). Clinical and metabolic characterization of lean caucasian subjects with non-alcoholic fatty liver. The American Journal of Gastroenterology, 112, 102–110.
Floegel, A., Stefan, N., Yu, Z., Mühlenbruch, K., Drogan, D., Joost, H.-G., et al. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62, 639–648.
Furse, S., & Kroon, A. I. P. M.d. (2015). Phosphatidylcholine’s functions beyond that of a membrane brick. Molecular Membrane Biology, 32, 117–119.
Hammer, S., van der Meer, R. W., Lamb, H. J., de Boer, H. H., Bax, J. J., de Roos, A., et al. (2008). Short-term flexibility of myocardial triglycerides and diastolic function in patients with type 2 diabetes mellitus. American Journal of Physiology Endocrinology and Metabolism, 295, E714–E718.
Kahn, H. S. (2005). The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovascular Disorders, 5, 26.
Kaikkonen, J. E., Würtz, P., Suomela, E., Lehtovirta, M., Kangas, A. J., Jula, A., et al. (2017). Metabolic profiling of fatty liver in young and middle-aged adults: Cross-sectional and prospective analyses of the Young Finns Study. Hepatology, 65, 491–500.
Kalhan, S. C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A. J., Hanson, R. W., et al. (2011). Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism, 60, 404–413.
Karlas, T., Petroff, D., Garnov, N., Böhm, S., Tenckhoff, H., Wittekind, C., et al. (2014). Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS ONE, 9, e91987.
Koot, B. G. P., Westerhout, R., Bohte, A. E., Vinke, S., Pels Rijcken, T. H., Nederveen, A. J., et al. (2014). Ultrasonography is not more reliable than anthropometry for assessing visceral fat in obese children. Pediatric Obesity, 9, 443–447.
Korn, E. L., & Graubard, B. I. (1991). Epidemiologic studies utilizing surveys: Accounting for the sampling design. American Journal of Public Health, 81, 1166–1173.
Lemieux, I., Pascot, A., Couillard, C., Lamarche, B., Tchernof, A., Almeras, N., et al. (2000). Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation, 102, 179–184.
Li, Z., Zhang, H., Liu, J., Liang, C.-P., Li, Y., Li, Y., et al. (2011). Reducing plasma membrane sphingomyelin increases insulin sensitivity. Molecular and Cellular Biology, 31, 4205–4218.
Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9, 1–19.
Martin, A. D., Janssens, V., Caboor, D., Clarys, J.-P., & Marfell-Jones, M. J. (2003). Relationships between visceral, trunk and whole-body adipose tissue weights by cadaver dissection. Annals of Human Biology, 30, 668–677.
Martin, F. P., Montoliu, I., Collino, S., Scherer, M., Guy, P., Tavazzi, I., et al. (2013). Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected]. PLoS ONE, 8, e73445.
Matsumoto, T., Kobayashi, T., & Kamata, K. (2007). Role of lysophosphatidylcholine (LPC) in atherosclerosis. Current Medicinal Chemistry, 14, 3209–3220.
Mook-Kanamori, D. O., de Mutsert, R., Rensen, P. C., Prehn, C., Adamski, J., den Heijer, M., et al. (2016). Type 2 diabetes is associated with postprandial amino acid measures. Archives of Biochemistry and Biophysics, 589, 138–144.
Naressi, A., Couturier, C., Devos, J. M., Janssen, M., Mangeat, C., de Beer, R., et al. (2001). Java-based graphical user interface for the MRUI quantitation package. Magma, 12, 141–152.
Neamat-Allah, J., Johnson, T., Nabers, D., Hüsing, A., Teucher, B., Katzke, V., et al. (2015). Can the use of blood-based biomarkers in addition to anthropometric indices substantially improve the prediction of visceral fat volume as measured by magnetic resonance imaging? European Journal of Nutrition, 54, 701–708.
Orešič, M., Hyötyläinen, T., Kotronen, A., Gopalacharyulu, P., Nygren, H., Arola, J., et al. (2013). Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia, 56, 2266–2274.
Polotsky, H. N., & Polotsky, A. J. (2010). Metabolic implications of menopause. Seminars in Reproductive Medicine, 28, 426–434.
Pouliot, M. C., Després, J. P., Lemieux, S., Moorjani, S., Bouchard, C., Tremblay, A., et al. (1994). Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. The American Journal of Cardiology, 73, 460–468.
Puri, P., Wiest, M. M., Cheung, O., Mirshahi, F., Sargeant, C., Min, H.-K., et al. (2009). The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 50, 1827–1838.
Rauschert, S., Uhl, O., Koletzko, B., Kirchberg, F., Mori, T. A., Huang, R.-C., et al. (2016). Lipidomics reveals Associations of Phospholipids with obesity and insulin resistance in young adults. The Journal of Clinical Endocrinology and Metabolism, 101, 871–879.
Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2012). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–142.
Scherer, M., Montoliu, I., Qanadli, S. D., Collino, S., Rezzi, S., Kussmann, M., et al. (2015). Blood plasma lipidomic signature of epicardial fat in healthy obese women: Lipidomic phenotype of epicardial adiposity. Obesity, 23, 130–137.
Schwimmer, J. B., Middleton, M. S., Behling, C., Newton, K. P., Awai, H. I., Paiz, M. N., et al. (2015). Magnetic resonance imaging and liver histology as biomarkers of hepatic steatosis in children with nonalcoholic fatty liver disease: Clinical observations in hepatology. Hepatology, 61, 1887–1895.
Siegert, S., Yu, Z., Wang-Sattler, R., Illig, T., Adamski, J., Hampe, J., et al. (2013). Diagnosing fatty liver disease: A comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers. PLoS ONE, 8, e76813.
Syme, C., Czajkowski, S., Shin, J., Abrahamowicz, M., Leonard, G., Perron, M., et al. (2016). Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents clinical perspective: A cohort study. Circulation, 134, 1629–1636.
Szymanska, E., Bouwman, J., Strassburg, K., Vervoort, J., Kangas, A. J., Soininen, P., et al. (2012). Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: Towards metabolomics diagnostics. OMICS, 16, 652–667.
Tchernof, A., & Despres, J. P. (2013). Pathophysiology of human visceral obesity: An update. Physiological Reviews, 93, 359–404.
Vongsuvanh, R., George, J., McLeod, D., & van der Poorten, D. (2012). Visceral adiposity index is not a predictor of liver histology in patients with non-alcoholic fatty liver disease. Journal of Hepatology, 57, 392–398.
VWS, M.V. (2013). Nederland de Maat Genomen: Hoeveel mensen hebben overgewicht? https://www.volksgezondheidenzorg.info/onderwerp/overgewicht/cijfers-context/huidige-situatie.
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.
Zelber-Sagi, S., Webb, M., Assy, N., Blendis, L., Yeshua, H., Leshno, M., et al. (2013). Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification. World Journal of Gastroenterology, 19, 57–64.
Zhou, Y., Orešič, M., Leivonen, M., Gopalacharyulu, P., Hyysalo, J., Arola, J., et al. (2016). Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clinical Gastroenterology and Hepatology, 14, 1463–1472.