Metabolome‐genome‐wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism

Plant Journal - Tập 81 Số 1 - Trang 13-23 - 2015
Fumio Mizutani1,2, Ryo Nakabayashi2, Zhigang Yang2, Yozo Okazaki2, Jun‐ichi Yonemaru3, Kaworu Ebana3, Masahiro Yano3, Kazuki Saito4,2
1Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan
2RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
3National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
4Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan

Tóm tắt

Summary

Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome‐wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications.

Từ khóa


Tài liệu tham khảo

10.1093/pcp/pcr165

10.1007/s00122-008-0722-6

10.1093/bioinformatics/btm554

10.1038/nature08800

10.1371/journal.pone.0002068

10.1016/S0031-9422(00)83183-0

10.1104/pp.108.117754

10.1016/S0031-9422(02)00145-0

10.1186/gb-2011-12-10-232

10.1074/jbc.M109.009258

10.1016/j.tig.2012.09.006

10.1002/rcm.2185

10.1371/journal.pgen.1001198

10.1534/genetics.109.108522

10.1371/journal.pbio.1001125

10.1016/j.phytochem.2009.09.025

10.1038/ng.3007

10.1111/jipb.12204

10.1093/nar/gkq310

10.1073/pnas.1319681110

10.1104/pp.113.217851

10.1002/jms.1777

10.1038/ng.695

10.1038/ng.1018

10.1101/gr.5509507

10.1534/genetics.107.080101

10.1073/pnas.0610429104

10.1016/j.plaphy.2009.08.004

10.1105/tpc.109.067611

10.1093/genetics/159.1.359

10.1104/pp.126.2.811

10.1105/tpc.13.3.681

10.1016/j.jplph.2007.01.006

10.1111/j.1365-313X.2009.03910.x

10.1007/s11306-011-0369-1

10.1111/j.1365-313X.2008.03705.x

10.1104/pp.109.148031

10.3389/fpls.2011.00040

10.1111/j.1365-313X.2012.04903.x

10.1073/pnas.0900992106

10.1007/s11130-011-0217-5

10.1073/pnas.1303471110

10.1146/annurev-arplant-042110-103814

10.1073/pnas.1120813109

10.1105/tpc.108.058131

10.1016/j.pbi.2013.04.001

10.1146/annurev.arplant.043008.092035

10.1093/pcp/pcs184

10.1016/j.phytochem.2012.07.007

10.1105/tpc.107.056523

10.1016/S0031-9422(02)00723-9

10.1016/S0031-9422(00)00453-2

10.1016/S0031-9422(03)00293-0

10.1007/s11306-007-0082-2

10.1038/nrg2322

10.2174/187152012803833026

10.1073/pnas.1203689109

10.1104/pp.111.189845

10.1038/ncomms4438

10.1007/s11306-013-0619-5

10.1371/journal.pone.0032982

10.1038/ncomms1467