Chuyển hóa phức hợp tannin-protein bởi vi khuẩn kỵ khí tùy tiện phân lập từ phân gấu túi

Biodegradation - Tập 4 - Trang 91-99 - 1993
Ro Osawa1, Terry P. Walsh2, Steven J. Cork3
1Veterinary Service & Research, Lone Pine Koala Sanctuary, Brisbane, Australia
2Centre for Molecular Biotechnology, School of Life Science, Queensland University of Technology, Faculty of Science, Brisbane, Australia
3CSIRO Division of Wildlife and Ecology, Lyneham, Australia

Tóm tắt

Các con đường chuyển hóa liên quan đến sự phân hủy phức hợp tannin-protein (T-PC) đã được khảo sát ở nhiều loại vi khuẩn kỵ khí tùy tiện, đặc biệt là vi khuẩn phân lập từ phân gấu túi, bao gồm vi khuẩn ruột phân hủy T-PC (T-PCDE), Streptococcus bovis, Klebsiella pneumoniae và K. oxytoca. Nghiên cứu cho thấy T-PCDE và loại hình I của S. bovis có khả năng phân hủy protein liên kết với gallotannin (một loại tannin có thể thủy phân), nhưng không thể phân hủy protein liên kết với quebracho (một loại tannin cô đặc). Các nghiên cứu tiếp theo cho thấy những chủng này chuyển hóa axit gallic thành pyrogallol. Các chủng Klebsiella pneumoniae và K. oxytoca, không phân hủy T-PC, cũng chuyển hóa axit gallic thành pyrogallol. Pyrogallol không bị phân hủy bởi bất kỳ chủng nào được nghiên cứu, nhưng không được phát hiện trong phân tươi của gấu túi. Phần lớn các chủng được phân lập từ phân có khả năng phân hủy phloroglucinol. Dựa trên các phát hiện này, chúng tôi đề xuất rằng các thành viên của hệ vi khuẩn đường ruột của gấu túi hợp tác trong việc phân hủy T-PC.

Từ khóa


Tài liệu tham khảo

Aoki K, Shinke R & Nishira H (1976) Purification and some properties of yeast tannase. Agric. Biol. Chem. 40: 79–85 Barry TN & Manley TR (1984) The role of condensed tannins in the nutritional value ofLotus pedunculatus for sheep. Bri. J. Nutr. 51: 493–504 Bate-Smith EC & Lerner NH (1954) Leucoanthocyanidins. 2. Systematic distribution of leucoanthocyanins in leaves. Biochem. J. 58: 126–132 Booth AN, Masri MS, Robbins DJ, Emerson OH, Jones FT & De Eds F (1959) The metabolic fate of gallic acid and related compounds. J. Biol. Chem. 234: 3014–3016 Brune A & Schink B (1990) Pyrogallol to phloroglucinol converstion and other hydroxyl transfer reactions catalyzed by cell extracts ofPelobacter acidigallici. J. Bacteriol. 172: 1070–1076 Cork SJ, Pahl L (1984) The possible influence of nutritional factors on diet and habitat selection by the ringtail possum (Pseudocheirus peregrinus). In: Smith AP & Hume ID (eds) Possums and Gliders, pp 269–276. Chipping Norton Inc., Sydney, Australia Cork SJ, Hume ID & Dawson TJ (1983) Digestion and metabolism of a mature folilar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). J. Comp. Physiol. 153: 181–190 Eberhard IH (1978) Ecology of the koala,Phascolarctos cinereus (Goldfuss) Marsupialia: Phascolarctidae, in Australia. In: Montgomery GG (ed) The Ecology of Arboreal Folivore, pp. 315–327. Smithsonian Institution Press, Washington, DC Ebarhard IH, McNamara J, Pearse RJ, Southwell IA (1975) Ingestion and excretion ofEucalyptus punctata D.C. and its essential oil by the koala,Phascolarctos cinereus (Goldfuss). Aust. J. Zool. 23: 169–179 Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phtochem. 10: 1–40 Grant DJW, Patel JC (1969) The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid byKlebsiella aerogenes. Antonie van Leeuwenhoek 35: 325–343 Glick Z & Joslyn MA (1970) Food intake depression and other metabolic effects of tannic acid in the rat. J. Nutr. 100: 509–515 Hagerman AE & Butler LG (1981) The specificity of proanthocyani din-protein interactions. J. Biol. Chem. 256: 4494–4497 Hoefler AC & Coggon P (1976) Reversed-phase high-performance liquid chromatography of tea constituents. J. Chromatogr. 129: 460–463 Jean D, Pourrat H, Pourrat A & Carnat A (1981) Assay of tannase (tannin acylhydrolase EC 3.1.1.20) by gas chromatography. Analyt. Biochem. 110: 369–372 Krumholz LR & Bryant MP (1986)Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8–14 Krumholz LR, Crawford RL, Hemling ME & Bryant MP (1987). Metabolism of gallate and phloroglucinol inEubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169: 1886–1890 Macauley BJ, Fox LR (1980) Variation in total phenols and condensed tannins in eucalyptus: leaf phenology and insect grazing. Aust. J. Ecol. 5: 31–35 McLeod MN (1974). Plant tannins — their role in forage quality. Nutr. Abst. Rev. 44: 803–815. McManus J, Lilley TH & Haslam E (1983). Plant polyphenols and their association with protein. In: Hedin PA (ed) Plant Resistance to Insects, pp 123–137. ACS symposium Series 208, American Chemical Society, Washington Mole S & Waterman PG (1987) Tannins as antifeedants to mammalian herbivores — Still an open question? In: Waller GR (ed) Allelochemicals: Role in Agriculture and Forestry, pp 572–587. American Chemical Society, Washington DC Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by aStreptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56: 829–831 Osawa R & Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex degradingStreptococcus spp. in feces of koalas. Appl. Environ. Microbiol. 56: 3609–3611 Osawa R (1991) An investigation of streptococal flora in feces of koalas. J. Wildl. Manage. 55: 623–627 Osawa R (1992) Tannin-protein complex degrading enterobacteria isolated from the alimentary tracts of koalas, and a selective medium for their enumeration. Appl. Environ. Microbiol. 58: 1754–1759 Pourrat H, Regerat F, Morvan P & Pourrat A (1987) Microbiological production of gallic acid fromRhus corriaria L. Biothech. Let. 9: 731–734 Rayudu GVN, Kadirvel R, Vohra P & Kratzer FH (1970) Toxicity of tannic acid and its metabolites for chickens. Poult. Sci. 49: 957–960 Rhoades DF & Cates RG (1976) A general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 10: 168–213 Robbins CT, Mole S, Hagerman AE & Hanley TA (1987) Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecol. 68: 1606–1615 Salunkhe DK, Chavan JK & Kadam SS (1989) Dietary Tannins: Consequences and Remedies. CRC Press, Inc, Boca Raton, Florida Samain E, Albagnac G & Dubourguier H-C (1986) Initial stepts of catabolism of trihydroxybenzenes inPelobacter acidigallici. Arch. Microbiol. 144: 242–244 Scheline RR (1966) Decarboxylation and demethylation of some phenolic benzoic acid derivatives by rat caecal contents. J. Pharm. Pharmac. 18: 664–669 Schink B, Pfenning N (1982) Fermenation of trihydroxybenzenes byPelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195–201 Swain T (1978) Plant-animal coevolution: a synoptic view of palezoic and mesozoic. In: Harborne JB (ed) Biochemical Aspects of Plant and Animal Co-evolution, pp 1–19. Academic Press, Inc., New York Tsai CG & Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21: 749–801 Tsai CG, Gates DM, Ingledew WM, Jones GA (1976). Products of anaerobic phloroglucinol degradation byCoprococcus sp. Pe15. Can. J. Microbiol. 22: 159–164 Van Buren JP, Robinson WB (1969) Formation of complexes between protein and tannic acid. J. Agr. Food. Chem. 17: 772–777 Van Sumere CF, Albrecht J, Dedonder A, DePooter H & Pé I (1975) Plant protein and phenolics. In: Harborne JB & Van Sumere CF (eds) Annu. Proc. Phytochem (pp 211–261) Academic Press, San Diego White T (1957) Tannins-their occurrence and significance. J. Sci. Food. Agric. 8: 377–385 Whittle PJ, Lunt DO & Evans WC (1976) Anaerobic photo metabolism of aromatic compounds byRhodopseudomonas sp. Biochem. Soc. Trans. 4: 490–491 Yoshida H, Tani Y & Yamada H (1982) Isolation and identification of a pyrogallol producing bacterium from soil. Agric. Biol. Chem. 46: 2539–2546 Zucker WV (1983) Tannin: Does structure determine function? An ecological perspective. Am. Nat. 121: 335–365