Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae

Katerina Kousoulaki1, Tone‐Kari Østbye1, Aleksei Krasnov1, Jacob Torgersen1, Turid Mørkøre1, John Sweetman2
1Nofima AS, Department of Nutrition and Feed Technology, N-5141 Fyllingsdalen, Norway
2Alltech Inc., Sarney, Dunboyne, County Meath, Republic of Ireland

Tóm tắt

AbstractMicroalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8–0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2761.2012.01384.x

10.1021/jf035004c

10.1016/j.marpol.2010.04.001

10.1016/S0044-8486(96)01501-3

Pike, 2003, Impact of fish farming on fish stocks, Fish Farmer, 26, 14

Souci, 2008, Food Composition and Nutrition Tables

Becker, 2004, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 312

Ytrestøyl T , Aas TS , Berge GM , (2011) Resource utilisation and eco-efficiency of Norwegian salmon farming in 2010. Nofima report 53/2011, p. 108. http://www.nofima.no/filearchive/rapport-53-2011_4.pdf (accessed April 2012)

10.1146/annurev.energy.28.050302.105509

10.1007/s10695-012-9670-9

10.1176/ajp.2006.163.6.1098

10.1016/j.aquaculture.2012.01.017

10.1016/j.fsi.2014.06.032

10.1161/01.ATV.17.2.279

Grimsgaard, 1997, Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids, Am J Clin Nutr, 66, 649, 10.1093/ajcn/66.3.649

10.1006/abio.1993.1270

10.1016/j.fsi.2011.09.011

10.1016/j.aquaculture.2011.09.023

10.1161/01.CIR.102.11.1264

10.1016/j.fsi.2010.09.001

10.7326/0003-4819-130-7-199904060-00003

10.1016/j.biortech.2013.08.044

Jones, 2014, Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective, Fish Fisheries

10.1038/1791345a0

Pepe, 1996, Dietary fish oil confers direct antiarrhythmic properties on the myocardium of rats, J Nutr, 126, 34, 10.1093/jn/126.1.34

10.1046/j.1365-277X.2003.00423.x

Bracco, 1994, Effect of triglyceride structure on fat absorption, Am J Clin Nutr, 60, 1002, 10.1093/ajcn/60.6.1002S

Tsikliras, 2013, Exploitation trends of the Mediterranean and Black Sea fisheries, Acta Adriatica, 54, 273

10.1371/journal.pone.0071843

10.1046/j.1467-2979.2003.00103.x

10.7326/0003-4819-158-7-201304020-00003

Ruxton, 2007, The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence, J Hum Nutr Diet, 20, 275, 10.1111/j.1365-277X.2007.00770.x

10.1038/nature01017

10.1038/35007534

10.1016/0044-8486(92)90353-M

Andersen, 1994, Fillet gaping in farmed Atlantic salmon (Salmo salar), Norw J Agr Sci, 8, 165

10.1111/j.1365-2095.2012.00971.x

10.1001/archneur.62.12.noc50161

10.1007/s10811-013-9983-9

10.1016/j.aquaculture.2008.12.034

10.1161/01.CIR.94.9.2337

10.1139/y59-099

10.1016/S0140-6736(89)90828-3

10.1016/j.biotechadv.2013.07.011

10.1016/j.fsi.2013.06.026

10.3945/jn.108.096016

10.1016/j.clnu.2013.09.010

10.1001/jama.287.14.1815

Tietz, 1995, Clinical Guide to Laboratory Tests

10.1016/j.molcel.2013.05.012

10.1016/j.aquaculture.2008.02.005

10.1016/j.cbpa.2007.05.018

10.2527/jas.2008-1428

10.1016/j.cbd.2010.04.006

10.1097/00043798-199706000-00006

10.1038/4551044a

10.1016/j.cbpa.2007.05.018

10.1073/pnas.0905235106

10.1111/anu.12094

10.1016/j.aquaculture.2007.02.031

10.1007/s00253-010-2639-7

10.1242/jeb.01488

10.1006/pmed.1998.0472

10.1016/j.aquaculture.2009.01.001

10.1111/j.1365-2621.2002.tb08749.x

10.1016/j.foodchem.2005.01.060

10.1038/sj.ejcn.1600745

10.1016/j.aquaculture.2013.08.033

10.1016/j.biotechadv.2010.08.005

10.1016/j.aquaculture.2008.08.015

10.1016/j.cbpa.2010.09.001

10.1016/S0044-8486(01)00524-5

10.1080/713610925

Xu, 2014, Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrx japonicus), PLOS ONE, 9

10.1111/j.1365-2621.2003.tb09672.x

10.1111/j.1365-2109.2004.01131.x

10.1586/eri.11.176

10.1023/A:1008106304417