Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chuyển hóa đóng vai trò cầu nối giữa tế bào cơ tim và tế bào miễn dịch trong các bệnh tim mạch
Springer Science and Business Media LLC - Trang 1-16 - 2024
Tóm tắt
Rối loạn chuyển hóa của tế bào cơ tim có vai trò quan trọng trong sự tiến triển của nhiều bệnh tim mạch khác nhau. Sự tái lập chuyển hóa có thể cung cấp ATP cho tế bào cơ tim và bảo vệ chúng trong quá trình bệnh, nhưng sự chuyển hóa này cũng dẫn đến những hậu quả bất lợi như stress oxy hóa, rối loạn chức năng ti thể, và cuối cùng làm trầm trọng thêm tổn thương cơ tim. Hơn nữa, sự tích tụ bất thường của các chất chuyển hóa do sự tái lập chuyển hóa của tế bào cơ tim gây ra làm thay đổi môi trường vi mô của tim và ảnh hưởng đến quá trình chuyển hóa của các tế bào miễn dịch. Immunometabolism, như một điểm nóng nghiên cứu, tham gia vào việc điều chỉnh kiểu hình và chức năng của các tế bào miễn dịch. Sau tổn thương cơ tim, cả tế bào miễn dịch cư trú trong tim và tế bào miễn dịch xâm nhập vào tim đều đóng góp đáng kể vào sự viêm, sửa chữa và tái cấu trúc của tim. Ngoài ra, các chất chuyển hóa được tạo ra từ sự tái lập chuyển hóa của các tế bào miễn dịch có thể ảnh hưởng thêm đến môi trường vi mô, do đó tác động đến chức năng của tế bào cơ tim và các tế bào miễn dịch khác. Do đó, sự tái lập chuyển hóa và mức độ chất chuyển hóa bất thường có thể đóng vai trò như một cầu nối giữa tế bào cơ tim và tế bào miễn dịch, dẫn đến sự phát triển của các bệnh tim mạch. Chúng tôi xin tóm tắt mối quan hệ chuyển hóa giữa tế bào cơ tim và tế bào miễn dịch trong các bệnh tim mạch, cùng với tác động đến tổn thương tim, điều này có thể trở thành chiến lược điều trị cho các bệnh tim mạch, đặc biệt là trong nghiên cứu dược phẩm.
Từ khóa
#chuyển hóa #tế bào cơ tim #tế bào miễn dịch #bệnh tim mạch #stress oxy hóa #rối loạn chức năng ti thểTài liệu tham khảo
Lu M, Jia M, Wang Q, et al. The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci. 2021;270:119153. https://doi.org/10.1016/j.lfs.2021.119153
Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487–513. https://doi.org/10.1161/circresaha.121.318241.
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci. 2022;23(2):996. https://doi.org/10.3390/ijms23020996.
Vajdovich P. Free radicals and antioxidants in inflammatory processes and ischemia-reperfusion injury. Vet Clin North Am Small Animal Pract. 2008;38(1):31–123, v. https://doi.org/10.1016/j.cvsm.2007.11.008.
Milliken A, Ciesla J, Nadtochiy S, Brookes P. Distinct effects of intracellular vs. extracellular acidic pH on the cardiac metabolome during ischemia and reperfusion. J Mol Cell Cardiol. 2023;174:101–14. https://doi.org/10.1016/j.yjmcc.2022.11.008.
Manosalva C, Quiroga J, Hidalgo A, et al. Role of Lactate in Inflammatory Processes: Friend or Foe. Front Immunol. 2021;12:808799. https://doi.org/10.3389/fimmu.2021.808799.
Marelli-Berg F, Aksentijevic D. Immunometabolic cross-talk in the inflamed heart. Cell Stress. 2019;3(8):240–66. https://doi.org/10.15698/cst2019.08.194.
Chen R, Zhang S, Liu F, et al. viaRenewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation Jagged-1-Notch1. Acta Pharm Sinica B. 2023;13(1):128–41. https://doi.org/10.1016/j.apsb.2022.08.016.
Graham N, Huang G. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology. 2021;162(9):bqab081. https://doi.org/10.1210/endocr/bqab081.
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res. 2021;117(3):712–26. https://doi.org/10.1093/cvr/cvaa159.
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341–59. https://doi.org/10.1038/s41569-019-0331-x.
Dimasi C, Darby J, Morrison J. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol. 2023;601(8):1319–41. https://doi.org/10.1113/jp284137.
Taegtmeyer H, Young M, Lopaschuk G, et al. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res. 2016;118(10):1659–701. https://doi.org/10.1161/res.0000000000000097.
Jankauskas S, Kansakar U, Varzideh F, et al. Heart failure in diabetes. Metab: Clin Exp. 2021;125:154910. https://doi.org/10.1016/j.metabol.2021.154910.
Ussher J, Folmes C, Keung W, et al. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PloS one. 2012;7(5):e37703. https://doi.org/10.1371/journal.pone.0037703.
Tran D, Wang Z. Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. J Am Heart Assoc. 2019;8(12):e012673. https://doi.org/10.1161/jaha.119.012673.
Karwi Q, Biswas D, Pulinilkunnil T, Lopaschuk G. Myocardial Ketones Metabolism in Heart Failure. J Cardiac Failure. 2020;26(11):998–1005. https://doi.org/10.1016/j.cardfail.2020.04.005.
Sun H, Olson K, Gao C, et al. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation. 2016;133(21):2038–49. https://doi.org/10.1161/circulationaha.115.020226.
Stanley W, Recchia F, Lopaschuk G. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129. https://doi.org/10.1152/physrev.00006.2004.
Murashige D, Jang C, Neinast M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, NY). 2020;370(6514):364–8. https://doi.org/10.1126/science.abc8861.
Wu T, Wang M, Ning F, et al. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res. 2023;187:106604. https://doi.org/10.1016/j.phrs.2022.106604.
Uddin G, Zhang L, Shah S, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):86. https://doi.org/10.1186/s12933-019-0892-3.
Tanada Y, Shioi T, Kato T, et al. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015;137:20–7. https://doi.org/10.1016/j.lfs.2015.06.021.
Duan X, Liu X, Zhan Z. Metabolic Regulation of Cardiac Regeneration. Front Cardiovasc Med. 2022;9:933060. https://doi.org/10.3389/fcvm.2022.933060.
Fillmore N, Mori J, Lopaschuk G. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. British J Pharmacol. 2014;171(8):2080–90. https://doi.org/10.1111/bph.12475.
Corcoran S, O’Neill L. HIF1α and metabolic reprogramming in inflammation. J Clin Investig. 2016;126(10):3699–707. https://doi.org/10.1172/jci84431.
Wang Y, Zheng Y, Qi B, et al. α-Lipoic acid alleviates myocardial injury and induces M2b macrophage polarization after myocardial infarction via HMGB1/NF-kB signaling pathway. Int Immunopharmacol. 2023;121:110435. https://doi.org/10.1016/j.intimp.2023.110435.
Chistiakov D, Shkurat T, Melnichenko A, Grechko A, Orekhov A. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–7. https://doi.org/10.1080/07853890.2017.1417631.
Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J. 2022;29(5):836–49. https://doi.org/10.5603/CJ.a2021.0174.
Chouchani E, Pell V, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5. https://doi.org/10.1038/nature13909.
Baardman J, Verberk SGS, Prange KHM, et al. A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia. Cell Rep. 2018;25(8):2044-52.e5. https://doi.org/10.1016/j.celrep.2018.10.092.
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 2022;68:81–92. https://doi.org/10.1016/j.cytogfr.2022.11.001.
Zhang S, Bories G, Lantz C, et al. Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Front Cardiovasc Med. 2019;6:42. https://doi.org/10.3389/fcvm.2019.00042.
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Front Immunol. 2019;10:1462. https://doi.org/10.3389/fimmu.2019.01462.
Wang F, Wang K, Xu W, et al. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep. 2017;19(11):2331–44. https://doi.org/10.1016/j.celrep.2017.05.065.
Prag H, Gruszczyk A, Huang M, et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res. 2021;117(4):1188–201. https://doi.org/10.1093/cvr/cvaa148.
Rubic T, Lametschwandtner G, Jost S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9(11):1261–9. https://doi.org/10.1038/ni.1657.
He L, Weber K, Schilling J. Glutamine Modulates Macrophage Lipotoxicity. Nutrients. 2016;8(4):215. https://doi.org/10.3390/nu8040215.
Sun P, Wang N, Zhao P, et al. Circulating Exosomes Control CD4 T Cell Immunometabolic Functions via the Transfer of miR-142 as a Novel Mediator in Myocarditis. Mol Ther: J Am Soc Gene Ther. 2020;28(12):2605–20. https://doi.org/10.1016/j.ymthe.2020.08.015.
Haas R, Smith J, Rocher-Ros V, et al. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol. 2015;13(7):e1002202. https://doi.org/10.1371/journal.pbio.1002202.
Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol. 2017;47(1):14–21. https://doi.org/10.1002/eji.201646477.
Zhong S, Li L, Shen X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free radbiol Med. 2019;144:266–78. https://doi.org/10.1016/j.freeradbiomed.2019.03.036.
Mishra P, Ying W, Nandi S, et al. Diabetic Cardiomyopathy: An Immunometabolic Perspective. Front Endocrinol. 2017;8:72. https://doi.org/10.3389/fendo.2017.00072.
Chen X, Li X, Xu X, et al. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Rad Res. 2021;55(4):405–15. https://doi.org/10.1080/10715762.2021.1876856.
Rocha D, Caldas A, Oliveira L, Bressan J, Hermsdorff H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–5. https://doi.org/10.1016/j.atherosclerosis.2015.11.015.
Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arteriosclerosis Thrombosis Vasc Biol. 2019;39(3):319–30. https://doi.org/10.1161/atvbaha.118.311572.
Liu G, Chen S, Zhong J, Teng K, Yin Y. Crosstalk between Tryptophan Metabolism and Cardiovascular Disease, Mechanisms, and Therapeutic Implications. Oxidative Med Cell Longevit. 2017;2017:1602074. https://doi.org/10.1155/2017/1602074.
Mezrich J, Fechner J, Zhang X, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol (Baltimore, Md : 1950). 2010;185(6):3190–8. https://doi.org/10.4049/jimmunol.0903670.
Piatek K, Feuerstein A, Zach V, et al. Nitric oxide metabolites: associations with cardiovascular biomarkers and clinical parameters in patients with HFpEF. ESC Heart Failure. 2022;9(6):3961–72. https://doi.org/10.1002/ehf2.14116.
Ye J, Palm W, Peng M, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015;29(22):2331–6. https://doi.org/10.1101/gad.269324.115.
Nitz K, Lacy M, Bianchini M, et al. The Amino Acid Homoarginine Inhibits Atherogenesis by Modulating T-Cell Function. Circ Res. 2022;131(8):701–12. https://doi.org/10.1161/circresaha.122.321094.
Burkhardt J, Carrizosa E, Shaffer M. The actin cytoskeleton in T cell activation. Annual Rev Immunol. 2008;26:233–59. https://doi.org/10.1146/annurev.immunol.26.021607.090347.
Deng J, Lü S, Liu H, et al. Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming. J Immunol (Baltimore, Md : 1950). 2017;198(1):170–83. https://doi.org/10.4049/jimmunol.1600613.
Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92(4):340–5. https://doi.org/10.1038/icb.2014.11.
Biswas S. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015;43(3):435–49. https://doi.org/10.1016/j.immuni.2015.09.001.
Kelly B, O’Neill L. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771–84. https://doi.org/10.1038/cr.2015.68.
Kim J. Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res. 2018;2018:8605471. https://doi.org/10.1155/2018/8605471.
Song Y, Kim A, Kim G, et al. Inhibition of lactate dehydrogenase A suppresses inflammatory response in RAW 264.7 macrophages. Mol Med Rep. 2019;19(1):629–37. https://doi.org/10.3892/mmr.2018.9678.
Yan J, Horng T. Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol. 2020;30(12):979–89. https://doi.org/10.1016/j.tcb.2020.09.006.
Lee J, Phelan P, Shin M, et al. SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1. Proc Natl Acad Sci USA. 2018;115(52):E12228-E12E34. https://doi.org/10.1073/pnas.1813458115.
Sanchez-Lopez E, Zhong Z, Stubelius A, et al. Choline Uptake and Metabolism Modulate Macrophage IL-1β and IL-18 Production. Cell Metab. 2019;29(6):1350-62.e7. https://doi.org/10.1016/j.cmet.2019.03.011.
Feingold K, Shigenaga J, Kazemi M, et al. Mechanisms of triglyceride accumulation in activated macrophages. J Leukocyte Biol. 2012;92(4):829–39. https://doi.org/10.1189/jlb.1111537.
Shin K, Hwang I, Choe S, et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017;8(1):1087. https://doi.org/10.1038/s41467-017-01232-w.
Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016;24(1):158–66. https://doi.org/10.1016/j.cmet.2016.06.004.
Liao S, Han C, Xu D, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019;10(1):5091. https://doi.org/10.1038/s41467-019-13078-5.
Mills E, Ryan D, Prag H, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556(7699):113–7. https://doi.org/10.1038/nature25986.
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32. https://doi.org/10.1038/ni.2833.
O’Neill L, Pearce E. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213(1):15–23. https://doi.org/10.1084/jem.20151570.
Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15(1):18–29. https://doi.org/10.1038/nri3771.
Chen H, Yang T, Zhu L, Zhao Y. Cellular metabolism on T-cell development and function. Int Rev Immunol. 2015;34(1):19–33. https://doi.org/10.3109/08830185.2014.902452.
Fox C, Hammerman P, Thompson C. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52. https://doi.org/10.1038/nri1710.
Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.
Zheng L, Zhang Z. Decoding the genetic basis of anti-tumor immunity. Immunity. 2021;54(2):199–201. https://doi.org/10.1016/j.immuni.2021.01.005.
Shiraz A, Panther E, Reilly C. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites. 2022;12(1):40. https://doi.org/10.3390/metabo12010040.
Imahashi N, Basar R, Huang Y, et al. Activated B cells suppress T-cell function through metabolic competition. J Immunother Cancer. 2022;10(12):e005644. https://doi.org/10.1136/jitc-2022-005644.
Fu Y, Wang L, Yu B, Xu D, Chu Y. Immunometabolism shapes B cell fate and functions. Immunology. 2022;166(4):444–57. https://doi.org/10.1111/imm.13499.
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. 2019;177(3):524–40. https://doi.org/10.1016/j.cell.2019.03.016.
Buck M, Sowell R, Kaech S, Pearce E. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.
DeBerge M, Chaudhary R, Schroth S, Thorp E. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Trans Sci. 2023;8(7):884–904. https://doi.org/10.1016/j.jacbts.2022.12.010.
Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol. 2022;63:102191. https://doi.org/10.1016/j.coph.2022.102191.
Papandreou I, Cairns R, Fontana L, Lim A, Denko N. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97. https://doi.org/10.1016/j.cmet.2006.01.012.
Willson J, Arienti S, Sadiku P, et al. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 2022;139(2):281–6. https://doi.org/10.1182/blood.2021011010.
Mouton AJ, Hall JE. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am J Physiol Regul Integr Comp Physiol. 2020;319(4):R476-RR84. https://doi.org/10.1152/ajpregu.00188.2020.
Flores-Gomez D, Bekkering S, Netea M, Riksen N. Trained Immunity in Atherosclerotic Cardiovascular Disease. Arteriosclerosis Thrombosis Vasc Biol. 2021;41(1):62–9. https://doi.org/10.1161/atvbaha.120.314216.
Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science (New York, NY). 2016;352(6284):aaf1098. https://doi.org/10.1126/science.aaf1098.
Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol. 2023;42(3):199–216. https://doi.org/10.1080/08830185.2021.1988591.
Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. https://doi.org/10.3390/biom8030080.
Zhang S, Liang Y, Li L, et al. Succinate: A Novel Mediator to Promote Atherosclerotic Lesion Progression. DNA Cell Biol. 2022;41(3):285–91. https://doi.org/10.1089/dna.2021.0345.
Koelwyn G, Corr E, Erbay E, Moore K. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19(6):526–37. https://doi.org/10.1038/s41590-018-0113-3.
Feng X, Chen W, Ni X, et al. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol. 2021;12:682853. https://doi.org/10.3389/fimmu.2021.682853.
Tabas I, Bornfeldt KE. Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis. Circ Res. 2020;126(9):1209–27. https://doi.org/10.1161/circresaha.119.315939.
Bories G, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Lett. 2017;591(19):3042–60. https://doi.org/10.1002/1873-3468.12786.
Thomas C, Leleu D, Masson D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front Immunol. 2022;13:868958. https://doi.org/10.3389/fimmu.2022.868958.
Parathath S, Mick SL, Feig JE, et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res. 2011;109(10):1141–52. https://doi.org/10.1161/circresaha.111.246363.
Luo Y, Lu S, Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging. 2020;12(2):1704–24. https://doi.org/10.18632/aging.102708.
Zhu X, Owen JS, Wilson MD, et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–206. https://doi.org/10.1194/jlr.M006486.
Mogilenko DA, Orlov SV, Trulioff AS, et al. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J: Off Publ Fed Am Soc Exp Biol. 2012;26(5):2019–30. https://doi.org/10.1096/fj.11-193946.
Mayer D, Altvater M, Schenz J, et al. Monocyte Metabolism and Function in Patients Undergoing Cardiac Surgery. Front Cardiovasc Med. 2022;9:853967. https://doi.org/10.3389/fcvm.2022.853967.
Zhai G, Qie S, Guo Q, Qi Y, Zhou Y. sDR5-Fc inhibits macrophage M1 polarization by blocking the glycolysis. J Geriatric Cardiol: JGC. 2021;18(4):271–80. https://doi.org/10.11909/j.issn.1671-5411.2021.04.003.
Chen Z, Dudek J, Maack C, Hofmann U. Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochem Pharmacol. 2021;190:114597. https://doi.org/10.1016/j.bcp.2021.114597.
Han J, Kim Y, Lim M, et al. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS nano. 2018;12(2):1959–77. https://doi.org/10.1021/acsnano.7b09107.
Chen S, Luo X, Sun Y, Jin W, He R. A novel metabolic reprogramming strategy for the treatment of targeting to heart injury-mediated macrophages. Int Immunopharmacol. 2023;122:110377. https://doi.org/10.1016/j.intimp.2023.110377.
Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016;213(9):1655–62. https://doi.org/10.1084/jem.20160061.
Aguiar C, Andrade V, Gomes E, et al. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 2010;47(1):37–46. https://doi.org/10.1016/j.ceca.2009.11.003.
Aguiar C, Rocha-Franco J, Sousa P, et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell commun Signal: CCS. 2014;12:78. https://doi.org/10.1186/s12964-014-0078-2.
Fukushima A, Alrob O, Zhang L, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Phys Heart Circ Physiol. 2016;311(2):H347–63. https://doi.org/10.1152/ajpheart.00900.2015.
Guo Y, Cho S, Saxena D, Li X. Multifaceted Actions of Succinate as a Signaling Transmitter Vary with Its Cellular Locations. Endocrinol Metab (Seoul, Korea). 2020;35(1):36–43. https://doi.org/10.3803/EnM.2020.35.1.36.
Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202–8. https://doi.org/10.1016/j.jjcc.2022.09.002.
Zhao M, Li F, Jian Y, et al. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur J Pharmacol. 2020;871:172916. https://doi.org/10.1016/j.ejphar.2020.172916.
Diotallevi M, Ayaz F, Nicol T, Crabtree M. Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine. Biochem Soc Trans. 2021;49(5):2189–98. https://doi.org/10.1042/bst20210269.
Ku H, Shen T, Cheng C. The potential of using itaconate as treatment for inflammation-related heart diseases. Tzu chi Med J. 2022;34(2):113–8. https://doi.org/10.4103/tcmj.tcmj_83_21.
Kanter J, Kramer F, Barnhart S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci USA. 2012;109(12):E715–24. https://doi.org/10.1073/pnas.1111600109.
Mouton A, Li X, Hall M, Hall J. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res. 2020;126(6):789–806. https://doi.org/10.1161/circresaha.119.312321.
Fukushima A, Lopaschuk G. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochimica et Biophysica Acta. 2016;1861(10):1525–34. https://doi.org/10.1016/j.bbalip.2016.03.020.
Watanabe R, Hilhorst M, Zhang H, et al. Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight. 2018;3(20):e123047. https://doi.org/10.1172/jci.insight.123047.
Suresh Babu S, Thandavarayan R, Joladarashi D, et al. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci Rep. 2016;6:36207. https://doi.org/10.1038/srep36207.
Hou Y, Wang Y, Tang K, et al. CD226 deficiency attenuates cardiac early pathological remodeling and dysfunction via decreasing inflammatory macrophage proportion and macrophage glycolysis in STZ-induced diabetic mice. FASEB J: Off Publ Fed Am Soc Exp Biol. 2023;37(8):e23047. https://doi.org/10.1096/fj.202300424RR.
Tomczyk M, Kraszewska I, Dulak J, Jazwa-Kusior A. Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase-1. Vasc Pharmacol. 2019;112:79–90. https://doi.org/10.1016/j.vph.2018.08.011.
Davis F, Gallagher K. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arteriosclerosis Thrombosis Vasc Biol. 2019;39(4):623–34. https://doi.org/10.1161/atvbaha.118.312135.
Liu Y, Yu M, Shou S, Chai Y. Sepsis-Induced Cardiomyopathy: Mechanisms and Treatments. Front Immunol. 2017;8:1021. https://doi.org/10.3389/fimmu.2017.01021.
Chen X, Wang S, Liu C, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185:106473. https://doi.org/10.1016/j.phrs.2022.106473.
Zheng Z, Ma H, Zhang X, et al. Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis. J Infect Dis. 2017;215(9):1396–406. https://doi.org/10.1093/infdis/jix138.
Lin Y, Xu Y, Zhang Z. Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation. 2020;43(4):1184–200. https://doi.org/10.1007/s10753-020-01233-w.
Gaddis DE, Padgett LE, Wu R, et al. Atherosclerosis Impairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis Thrombosis Vasc Biol. 2021;41(9):2387–98. https://doi.org/10.1161/atvbaha.120.314189.
Raphael I, Nalawade S, Eagar T, Forsthuber T. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74(1):5–17. https://doi.org/10.1016/j.cyto.2014.09.011.
Reilly N, Lutgens E, Kuiper J, Heijmans B, Wouter JJ. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol. 2021;18(12):824–37. https://doi.org/10.1038/s41569-021-00582-9.
Bi X, Li F, Liu S, et al. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Investig. 2017;127(5):1757–71. https://doi.org/10.1172/jci87388.
Taghizadeh E, Taheri F, Gheibi Hayat S, et al. The atherogenic role of immune cells in familial hypercholesterolemia. IUBMB Life. 2020;72(4):782–9. https://doi.org/10.1002/iub.2179.
Sage A, Tsiantoulas D, Binder C, Mallat Z. The role of B cells in atherosclerosis. Nat Rev Cardiol. 2019;16(3):180–96. https://doi.org/10.1038/s41569-018-0106-9.
Tsiantoulas D, Diehl C, Witztum J, Binder C. B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114(11):1743–56. https://doi.org/10.1161/circresaha.113.301145.
Michalek R, Gerriets V, Jacobs S, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (Baltimore, Md : 1950). 2011;186(6):3299–303. https://doi.org/10.4049/jimmunol.1003613.
Shi L, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76. https://doi.org/10.1084/jem.20110278.
Tan Y, Duan X, Wang B, Liu X, Zhan Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen Med. 2023;8(1):7. https://doi.org/10.1038/s41536-023-00282-7.
Mo F, Luo Y, Yan Y, et al. Are activated B cells involved in the process of myocardial fibrosis after acute myocardial infarction? An in vivo experiment. BMC Cardiovasc Disorders. 2021;21(1):5. https://doi.org/10.1186/s12872-020-01775-9.
Wu L, Dalal R, Cao C, et al. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci USA. 2019;116(43):21673–84. https://doi.org/10.1073/pnas.1911464116.
Kim D, Woo J, Min H, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome. J Autoimmun. 2021;119:102611. https://doi.org/10.1016/j.jaut.2021.102611.
Hao F, Tian M, Zhang X, et al. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci USA. 2021;118(22):e2014681118. https://doi.org/10.1073/pnas.2014681118.
Lu Y, Zhao N, Wu Y, et al. Inhibition of PGK1 attenuates autoimmune myocarditis by reprogramming CD4+ T cells metabolism. Cardiovasc Res. 2023;119(6):1377–89. https://doi.org/10.1093/cvr/cvad029.
Nindl V, Maier R, Ratering D, et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012;42(9):2311–21. https://doi.org/10.1002/eji.201142209.
Allison S. Hypertension: dendritic cells: linking oxidation and hypertension. Nat Rev Nephrol. 2014;10(12):674. https://doi.org/10.1038/nrneph.2014.191.
Kirabo A, Fontana V, de Faria A, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin investig. 2014;124(10):4642–56. https://doi.org/10.1172/jci74084.
Ochando J, Ordikhani F, Boros P, Jordan S. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol. 2019;16(4):350–6. https://doi.org/10.1038/s41423-019-0216-2.
Zhang J, Huang F, Chen L, et al. Sodium Lactate Accelerates M2 Macrophage Polarization and Improves Cardiac Function after Myocardial Infarction in Mice. Cardiovasc Ther. 2021;2021:5530541. https://doi.org/10.1155/2021/5530541.
Kohlhauer M, Pell V, Burger N, et al. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol. 2019;114(3):18. https://doi.org/10.1007/s00395-019-0727-0.
Mouton A, Flynn E, Moak S, et al. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J Mol Cell Cardiol. 2021;158:38–48. https://doi.org/10.1016/j.yjmcc.2021.05.008.
Liang S, Sun Q, Du Z, et al. PM induce the defective efferocytosis and promote atherosclerosis via HIF-1α activation in macrophage. Nanotoxicology. 2022;16(3):290–309. https://doi.org/10.1080/17435390.2022.2083995.
Zhou J, Liu W, Zhao X, et al. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2021;8(20):e2100505. https://doi.org/10.1002/advs.202100505.
Baardman J, Verberk S, van der Velden S, et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat Commun. 2020;11(1):6296. https://doi.org/10.1038/s41467-020-20141-z.
Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786.
Gai X, Liu F, Wu Y, et al. Overexpressed PKM2 promotes macrophage phagocytosis and atherosclerosis. Animal Models Exp Med. 2023;6(2):92–102. https://doi.org/10.1002/ame2.12266.
