Metabolic stress drives sympathetic neuropathy within the liver
Tài liệu tham khảo
Bai, 2019, Genetic identification of vagal sensory neurons that control feeding, Cell, 179, 1129, 10.1016/j.cell.2019.10.031
Barth, 2007, Glucose metabolism and catecholamines, Crit. Care Med., 35, S508, 10.1097/01.CCM.0000278047.06965.20
Blaszkiewicz, 2019, Neuropathy and neural plasticity in the subcutaneous white adipose depot, PLoS One, 14, e0221766, 10.1371/journal.pone.0221766
Cahill, 2006, Fuel metabolism in starvation, Annu. Rev. Nutr., 26, 1, 10.1146/annurev.nutr.26.061505.111258
Cao, 2018, Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging, Protein Cell, 9, 527, 10.1007/s13238-018-0528-5
Cheng, 2019, Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice, Diabetes, 68, 2120, 10.2337/db18-1233
Chi, 2018, Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density, Cell Metab., 27, 226, 10.1016/j.cmet.2017.12.011
Coleman, 2020, Programmed axon degeneration: from mouse to mechanism to medicine, Nat. Rev. Neurosci., 21, 183, 10.1038/s41583-020-0269-3
Conforti, 2014, Wallerian degeneration: an emerging axon death pathway linking injury and disease, Nat. Rev. Neurosci., 15, 394, 10.1038/nrn3680
Curcio, 2018, Axon regeneration in the central nervous system: facing the challenges from the inside, Annu. Rev. Cell Dev. Biol., 34, 495, 10.1146/annurev-cellbio-100617-062508
de Cabo, 2019, Effects of intermittent fasting on health, aging, and disease, N. Engl. J. Med., 381, 2541, 10.1056/NEJMra1905136
Ding, 2019, Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial innate immunity, Cell Rep., 27, 3799, 10.1016/j.celrep.2019.05.082
Duby, 2004, Diabetic neuropathy: an intensive review, Am. J. Health Syst. Pharm., 61, 160, 10.1093/ajhp/61.2.160
Essuman, 2017, The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration, Neuron, 93, 1334, 10.1016/j.neuron.2017.02.022
Gautron, 2015, Neural control of energy balance: translating circuits to therapies, Cell, 161, 133, 10.1016/j.cell.2015.02.023
Gerdts, 2013, Sarm1-mediated axon degeneration requires both SAM and TIR interactions, J. Neurosci., 33, 13569, 10.1523/JNEUROSCI.1197-13.2013
Godzik, 2015, The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury, J. Mol. Neurosci., 55, 865, 10.1007/s12031-014-0440-2
Hotamisligil, 1999, The role of TNFalpha and TNF receptors in obesity and insulin resistance, J. Intern. Med., 245, 621, 10.1046/j.1365-2796.1999.00490.x
Hotamisligil, 2008, Nutrient sensing and inflammation in metabolic diseases, Nat. Rev. Immunol., 8, 923, 10.1038/nri2449
Hurr, 2019, Liver sympathetic denervation reverses obesity-induced hepatic steatosis, J. Physiol., 597, 4565, 10.1113/JP277994
Ignatowski, 1996, Temporal regulation by adrenergic receptor stimulation of macrophage (M phi)-derived tumor necrosis factor (TNF) production post-LPS challenge, J. Neuroimmunol., 65, 107, 10.1016/0165-5728(96)00004-5
Jennings, 2015, Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors, Cell, 160, 516, 10.1016/j.cell.2014.12.026
Jensen, 2013, Hepatic nervous system and neurobiology of the liver, Compr. Physiol., 3, 655, 10.1002/cphy.c120018
Jiang, 2017, Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue, Cell Metab, 26, 686, 10.1016/j.cmet.2017.08.016
Jiang, 2020, The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1, Nature, 588, 658, 10.1038/s41586-020-2862-z
Kim, 2007, MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival, J. Exp. Med., 204, 2063, 10.1084/jem.20070868
Ko, 2020, SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration, J. Cell Biol., 219, 10.1083/jcb.201912047
Koch, 2015, Hypothalamic POMC neurons promote cannabinoid-induced feeding, Nature, 519, 45, 10.1038/nature14260
Lautt, 1983, Afferent and efferent neural roles in liver function, Prog. Neurobiol., 21, 323, 10.1016/0301-0082(83)90016-3
Liu, 2011, Neuronal intrinsic mechanisms of axon regeneration, Annu. Rev. Neurosci., 34, 131, 10.1146/annurev-neuro-061010-113723
Liu, 2020, Local sympathetic innervations modulate the lung innate immune responses, Sci. Adv., 6, eaay1497, 10.1126/sciadv.aay1497
Ludwig, 2018, Dietary fat: from foe to friend?, Science, 362, 764, 10.1126/science.aau2096
Mahar, 2018, Intrinsic mechanisms of neuronal axon regeneration, Nat. Rev. Neurosci., 19, 323, 10.1038/s41583-018-0001-8
Moller, 2000, Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes, Trends Endocrinol. Metab., 11, 212, 10.1016/S1043-2760(00)00272-1
Muthu, 2005, Adrenergic modulation of cytokine release in bone marrow progenitor-derived macrophage following polymicrobial sepsis, J. Neuroimmunol., 158, 50, 10.1016/j.jneuroim.2004.08.003
Myers, 2012, Central nervous system control of metabolism, Nature, 491, 357, 10.1038/nature11705
Nectow, 2017, Identification of a brainstem circuit controlling feeding, Cell, 170, 429, 10.1016/j.cell.2017.06.045
O'Neill, 2020, Effect of low-carbohydrate diets on cardiometabolic risk, insulin resistance, and metabolic syndrome, Curr. Opin. Endocrinol. Diabetes Obes., 27, 301, 10.1097/MED.0000000000000569
Osborn, 2012, The cellular and signaling networks linking the immune system and metabolism in disease, Nat. Med., 18, 363, 10.1038/nm.2627
Osterloh, 2012, dSarm/Sarm1 is required for activation of an injury-induced axon death pathway, Science, 337, 481, 10.1126/science.1223899
Pirzgalska, 2017, Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine, Nat. Med., 23, 1309, 10.1038/nm.4422
Reilly, 1978, Intrahepatic distribution of nerves in the rat, Anat. Rec., 191, 55, 10.1002/ar.1091910106
Renier, 2016, Mapping of brain activity by automated volume analysis of immediate early genes, Cell, 165, 1789, 10.1016/j.cell.2016.05.007
Rui, 2014, Energy metabolism in the liver, Compr. Physiol., 4, 177, 10.1002/cphy.c130024
Said, 2007, Diabetic neuropathy--a review, Nat. Clin. Pract. Neurol., 3, 331, 10.1038/ncpneuro0504
Satler, 1974, The activity and cytochemical localization of acetylcholinesterase and butyrylcholinesterase in the rat liver, Histochemistry, 39, 65
Skaaring, 1976, On the intrinsic innervation of normal rat liver. Histochemical and scanning electron microscopical studies, Cell Tissue Res., 171, 141, 10.1007/BF00219403
Sutherland, 1964, An evaluation of cholinesterase techniques in the study of the intrinsic innervation of the liver, J. Anat., 98, 321
Szelenyi, 2006, Dual beta-adrenergic modulation in the immune system: stimulus-dependent effect of isoproterenol on MAPK activation and inflammatory mediator production in macrophages, Neurochem. Int., 49, 94, 10.1016/j.neuint.2006.01.009
Turkiew, 2017, Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy, J. Peripher. Nerv. Syst., 22, 162, 10.1111/jns.12219
Wang, 2020, A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue, Nature, 583, 839, 10.1038/s41586-020-2527-y
Waterson, 2015, Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding, Cell Metab., 22, 962, 10.1016/j.cmet.2015.09.026
Yang, 2015, Pathological axonal death through a MAPK cascade that triggers a local energy deficit, Cell, 160, 161, 10.1016/j.cell.2014.11.053
Yi, 2010, The role of the autonomic nervous liver innervation in the control of energy metabolism, Biochim. Biophys. Acta, 1802, 416, 10.1016/j.bbadis.2010.01.006
Zeng, 2015, Sympathetic neuro-adipose connections mediate leptin-driven lipolysis, Cell, 163, 84, 10.1016/j.cell.2015.08.055
Zeng, 2019, Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis, Nature, 569, 229, 10.1038/s41586-019-1156-9
Ziauddeen, 2012, Obesity and the brain: how convincing is the addiction model?, Nat. Rev. Neurosci., 13, 279, 10.1038/nrn3212