Metabolic engineering to produce palmitic acid or palmitoleic acid in an oleic acid-producing Corynebacterium glutamicum strain

Metabolic Engineering - Tập 78 - Trang 148-158 - 2023
Seiki Takeno1, Yosuke Hirata1, Kako Kitamura1, Tatsunori Ohtake1, Kuniyoshi Aoki1, Noriko Murata1, Mikiro Hayashi2, Masato Ikeda1
1Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
2Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, Japan

Tài liệu tham khảo

Bamba, 2019, Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering, Metab. Eng., 56, 17, 10.1016/j.ymben.2019.08.012 Barzantny, 2012, Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences, Int. J. Cosmet. Sci., 34, 2, 10.1111/j.1468-2494.2011.00669.x Bentley, 2016, Engineering Escherichia coli to produce branched-chain fatty acids in high percentages, Metab. Eng., 38, 148, 10.1016/j.ymben.2016.07.003 Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099 Cao, 2008, Identification of a lipokine, a lipid hormone linking adipose tissue to systematic metabolism, Cell, 134, 933, 10.1016/j.cell.2008.07.048 Chalupský, 2014, Reactivity of the binuclear non-heme iron active site of Δ9 desaturase studied by large-scale multireference ab initio calculations, J. Am. Chem. Soc., 136, 15977, 10.1021/ja506934k Chang, 2006, Identification of Rv3230c as the NADPH oxidoreductase of a two-protein DesA3 acyl-CoA desaturase in Mycobacterium tuberculosis H37Rv, Biochemistry, 45, 13476, 10.1021/bi0615285 Chen, 2015, A novel feedstock for biodiesel production: the application of palmitic acid from Schizochytrium, Energy, 86, 128, 10.1016/j.energy.2015.03.110 Cho, 2020, Microbial production of fatty acids and derivative chemicals, Curr. Opin. Biotechnol., 65, 129, 10.1016/j.copbio.2020.02.006 Chu, 1999, Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (HmuO) from Corynebacterium diphtheriae, J. Biol. Chem., 274, 21319, 10.1074/jbc.274.30.21319 de Falco, 2022, Metabolomics and chemometrics of seven atomic plants: carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree, Phytochem. Anal., 33, 696, 10.1002/pca.3121 Doukhan, 1995, Genomic organization of the mycobacterial sigma gene cluster, Gene, 165, 67, 10.1016/0378-1119(95)00427-8 Eggeling, 2005, Experiments, 535 Erfe, 1973, Acetyl-CoA and propionyl-CoA carboxylation by Mycobacterium phlei: partial purification and some properties of the enzyme, Biochim. Biophys. Acta, 316, 143, 10.1016/0005-2760(73)90004-0 Ferreira, 2018, Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion, Proc. Natl. Acad. Sci. U.S.A., 115, 1262, 10.1073/pnas.1715282115 Frunzke, 2008, Regulation of iron homeostasis in Corynebacterium glutamicm, 241 Frunzke, 2008, Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3, J. Bacteriol., 190, 5111, 10.1128/JB.00310-08 Frunzke, 2011, Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA, J. Bacteriol., 193, 1212, 10.1128/JB.01130-10 Fulco, 1964, Cofactor requirements for the formation of Δ9-unsaturated fatty acids in Mycobacterium phlei, J. Biol. Chem., 239, 993, 10.1016/S0021-9258(18)91378-5 Goranson-Siekierke, 1999, Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor, Infect. Immun., 67, 1806, 10.1128/IAI.67.4.1806-1811.1999 Haas, 2019, Identifying the growth modulon of Corynebacterium glutamicum, Front. Microbiol., 10, 974, 10.3389/fmicb.2019.00974 Hentschel, 2014, Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum, Mol. Microbiol., 92, 1326, 10.1111/mmi.12633 Hoischen, 1990, Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum, J. Bacteriol., 172, 3409, 10.1128/jb.172.6.3409-3416.1990 Hu, 2019, A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts, J. Funct.Foods, 62, 10.1016/j.jff.2019.103520 Ikeda, 2017, In vivo roles of fatty acid biosynthesis enzymes in biosynthesis of biotin and α-lipoic acid in Corynebacterium glutamicum, Appl. Environ. Microbiol., 83, 10.1128/AEM.01322-17 Ikeda, 2003, The Corynebacterium glutamicum genome: features and impacts on biotechnological processes, Appl. Microbiol. Biotechnol., 62, 99, 10.1007/s00253-003-1328-1 Ikeda, 2021, A futile metabolic cycle of fatty acyl coenzyme A (acyl-CoA) hydrolysis and resynthesis in Corynebacterium glutamicum and its disruption leading to fatty acid production, Appl. Environ. Microbiol., 87, 10.1128/AEM.02469-20 Ikeda, 2020, Recent advances in amino acid production, vol. 23, 175 Irzik, 2014, Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum, J. Biotechnol., 192, 96, 10.1016/j.jbiotec.2014.10.031 Jovanovic, 2021, Microbial production of polyunsaturated fatty acids−high-value ingredients for aquafeed, superfoods, and pharmaceuticals, Curr. Opin. Biotechnol., 69, 199, 10.1016/j.copbio.2021.01.009 Kamisaka, 2015, Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 99, 201, 10.1007/s00253-014-6083-y Kassab, 2019, Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids, Microb. Cell Factories, 18, 163, 10.1186/s12934-019-1217-7 Kawaguchi, 1977, Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex, Proc. Natl. Acad. Sci. U.S.A., 74, 3180, 10.1073/pnas.74.8.3180 Kim, 2019, Engineering of an oleaginous bacterium for the production of fatty acids and fuels, Nat. Chem. Biol., 15, 721, 10.1038/s41589-019-0295-5 Kim, 2018, Rewiring FadR regulon for the selective production of ω-hydroxy palmitic acid from glucose in Escherichia coli, Metab. Eng., 47, 414, 10.1016/j.ymben.2018.04.021 Kimura, 1997, A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin, Bioehcm. Biophys. Res. Commun., 234, 157, 10.1006/bbrc.1997.6613 Koeberle, 2016, Stearoyl-CoA desaturase-1 and adaptive stress signaling, Biochim. Biophys. Acta, 1861, 1719, 10.1016/j.bbalip.2016.08.009 Kolouchová, 2015, New yeast-based approaches in production of palmitoleic acid, Bioresour. Technol., 192, 726, 10.1016/j.biortech.2015.06.048 Ledesma-Amaro, 2016, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab. Eng., 38, 38, 10.1016/j.ymben.2016.06.004 Li, 2019, Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory, J. Ind. Microbiol. Biotechnol., 46, 783, 10.1007/s10295-019-02156-8 Liebl, 1989, Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media, Appl. Microbiol. Biotechnol., 32, 205, 10.1007/BF00165889 Liu, 2020, Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering, Curr. Opin. Biotechnol., 62, 7, 10.1016/j.copbio.2019.07.005 Liu, 2019, Food-grade expression of an iron-containing acid urease in Bacillus subtilis, J. Biotechnol., 293, 66, 10.1016/j.jbiotec.2019.01.012 Liu, 2011, Fatty acid production in genetically modified cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 108, 6899, 10.1073/pnas.1103014108 Martin, 2003, Ribosomal RNA and ribosomal proteins in corynebacteria, J. Biotechnol., 104, 41, 10.1016/S0168-1656(03)00160-3 Meesapyodsuk, 2012, The front-end desaturase: structure, function, evolution, and biotechnological use, Lipids, 47, 227, 10.1007/s11745-011-3617-2 Mitsuhashi, 2004, A gene homologous to β-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions, Appl. Microbiol. Biotechnol., 63, 592, 10.1007/s00253-003-1402-8 Moche, 2003, Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme Δ9-staeroyl-acyl carrier protein desaturase, J. Biol. Chem., 278, 25072, 10.1074/jbc.M301662200 Morishima, 1987, Active site organization of bacterial type I fatty acid synthetase, J. Biochem., 102, 1451, 10.1093/oxfordjournals.jbchem.a122191 Müller, 2020, CO2/HCO3- accelerates iron reduction through phenolic compounds, mBio, 11, 10.1128/mBio.00085-20 Nachtschatt, 2020, Integral membrane fatty acid desaturases: a review of biochemical, structural, and biotechnological advances, Eur. J. Lipid Sci. Technol., 122, 10.1002/ejlt.202000181 Nakunst, 2007, The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes, J. Bacteriol., 189, 4696, 10.1128/JB.00382-07 Nickel, 2010, The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate, Mol. Microbiol., 78, 253, 10.1111/j.1365-2958.2010.07337.x Oguiza, 1995, Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum, J. Bacteriol., 177, 465, 10.1128/jb.177.2.465-467.1995 Ohnishi, 2002, A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant, Appl. Microbiol. Biotechnol., 58, 217, 10.1007/s00253-001-0883-6 Okazaki, 1967, L-Glutamic acid fermentation part II. The production of L-glutamic acid by an oleic acid-requiring mutant, Agric. Biol. Chem., 31, 1314, 10.1271/bbb1961.31.1314 Park, 2018, Optimization of odd chain fatty acid production by Yarrowia lipolytica, Biotechnol. Biofuels, 11, 158, 10.1186/s13068-018-1154-4 Pérard, 2018, Iron–sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding, J. Biol. Inorg. Chem., 23, 581, 10.1007/s00775-017-1527-3 Radmacher, 2005, Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum, Microbiology, 151, 2421, 10.1099/mic.0.28012-0 Rigouin, 2017, Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase, ACS Synth. Biol., 6, 1870, 10.1021/acssynbio.7b00034 Schmitt, 1995, Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, Infect. Immun., 63, 4284, 10.1128/iai.63.11.4284-4289.1995 Schweizer, 2011, Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production, Arch. Microbiol., 193, 227, 10.1007/s00203-010-0665-6 Steen, 2010, Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, 463, 559, 10.1038/nature08721 Takeno, 2018, The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains, Appl. Microbiol. Biotechnol., 102, 10603, 10.1007/s00253-018-9395-5 Takeno, 2007, Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 75, 1173, 10.1007/s00253-007-0926-8 Takeno, 2013, Development of fatty acid-producing Corynebacterium glutamicum strains, Appl. Environ. Microbiol., 79, 6776, 10.1128/AEM.02003-13 Tan, 2017, Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF, Microb. Cell Factories, 16, 38, 10.1186/s12934-017-0650-8 von Boeselager, 2018, Cytometry meets next-generation sequencing -RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum, Sci. Rep., 8 Wang, 2018, Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel, Bioresour. Technol., 270, 30, 10.1016/j.biortech.2018.09.016 Wang, 2016, Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes, Bioproc. Biosyst. Eng., 39, 1589, 10.1007/s00449-016-1633-6 Wennerhold, 2006, The DtxR regulon of Corynebacterium glutamicum, J. Bacteriol., 188, 2907, 10.1128/JB.188.8.2907-2918.2006 Wu, 2012, Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry, Prog. Lipid Res., 51, 340, 10.1016/j.plipres.2012.05.001 Xu, 2013, Modular optimization of multi-gene pathways for fatty acids production in E. coli, Nat. Commun., 4, 1409, 10.1038/ncomms2425 Yan, 2020, Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals, Metab. Eng., 58, 35, 10.1016/j.ymben.2019.04.009 Yang, 2011, Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes, Lipids Health Dis., 10, 120, 10.1186/1476-511X-10-120 Zhang, 2012, Enhancing fatty acid production by the expression of the regulatory transcription factor FadR, Metab. Eng., 14, 653, 10.1016/j.ymben.2012.08.009 Zhang, 2011, Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases, Metab. Eng., 13, 713, 10.1016/j.ymben.2011.09.007 Zhang, 2022, Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae, Biochem. Eng. J., 181, 10.1016/j.bej.2022.108402 Zhou, 2017, Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid, Bioresour. Technol., 239, 250, 10.1016/j.biortech.2017.05.045 Zhou, 2019, Comparison of lipid and palmitoleic acid induction of Tribonema minus under heterotrophic and phototrophic regimes by using high-density fermented seeds, Int. J. Mol. Sci., 20, 4356, 10.3390/ijms20184356 Zhou, 2021, Evaluating the effect of cultivation conditions on palmitoleic acid-rich lipid production by Scheffersomyces segobiensis DSM 27193, Biofuels Bioprod. Bioref., 15, 1859, 10.1002/bbb.2286 Zhou, 2016, Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories, Nat. Commun., 7, 10.1038/ncomms11709 Zhu, 2006, Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa, Mol. Microbiol., 60, 260, 10.1111/j.1365-2958.2006.05088.x