Metabolic engineering to produce palmitic acid or palmitoleic acid in an oleic acid-producing Corynebacterium glutamicum strain
Tài liệu tham khảo
Bamba, 2019, Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering, Metab. Eng., 56, 17, 10.1016/j.ymben.2019.08.012
Barzantny, 2012, Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences, Int. J. Cosmet. Sci., 34, 2, 10.1111/j.1468-2494.2011.00669.x
Bentley, 2016, Engineering Escherichia coli to produce branched-chain fatty acids in high percentages, Metab. Eng., 38, 148, 10.1016/j.ymben.2016.07.003
Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099
Cao, 2008, Identification of a lipokine, a lipid hormone linking adipose tissue to systematic metabolism, Cell, 134, 933, 10.1016/j.cell.2008.07.048
Chalupský, 2014, Reactivity of the binuclear non-heme iron active site of Δ9 desaturase studied by large-scale multireference ab initio calculations, J. Am. Chem. Soc., 136, 15977, 10.1021/ja506934k
Chang, 2006, Identification of Rv3230c as the NADPH oxidoreductase of a two-protein DesA3 acyl-CoA desaturase in Mycobacterium tuberculosis H37Rv, Biochemistry, 45, 13476, 10.1021/bi0615285
Chen, 2015, A novel feedstock for biodiesel production: the application of palmitic acid from Schizochytrium, Energy, 86, 128, 10.1016/j.energy.2015.03.110
Cho, 2020, Microbial production of fatty acids and derivative chemicals, Curr. Opin. Biotechnol., 65, 129, 10.1016/j.copbio.2020.02.006
Chu, 1999, Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (HmuO) from Corynebacterium diphtheriae, J. Biol. Chem., 274, 21319, 10.1074/jbc.274.30.21319
de Falco, 2022, Metabolomics and chemometrics of seven atomic plants: carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree, Phytochem. Anal., 33, 696, 10.1002/pca.3121
Doukhan, 1995, Genomic organization of the mycobacterial sigma gene cluster, Gene, 165, 67, 10.1016/0378-1119(95)00427-8
Eggeling, 2005, Experiments, 535
Erfe, 1973, Acetyl-CoA and propionyl-CoA carboxylation by Mycobacterium phlei: partial purification and some properties of the enzyme, Biochim. Biophys. Acta, 316, 143, 10.1016/0005-2760(73)90004-0
Ferreira, 2018, Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion, Proc. Natl. Acad. Sci. U.S.A., 115, 1262, 10.1073/pnas.1715282115
Frunzke, 2008, Regulation of iron homeostasis in Corynebacterium glutamicm, 241
Frunzke, 2008, Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3, J. Bacteriol., 190, 5111, 10.1128/JB.00310-08
Frunzke, 2011, Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA, J. Bacteriol., 193, 1212, 10.1128/JB.01130-10
Fulco, 1964, Cofactor requirements for the formation of Δ9-unsaturated fatty acids in Mycobacterium phlei, J. Biol. Chem., 239, 993, 10.1016/S0021-9258(18)91378-5
Goranson-Siekierke, 1999, Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor, Infect. Immun., 67, 1806, 10.1128/IAI.67.4.1806-1811.1999
Haas, 2019, Identifying the growth modulon of Corynebacterium glutamicum, Front. Microbiol., 10, 974, 10.3389/fmicb.2019.00974
Hentschel, 2014, Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum, Mol. Microbiol., 92, 1326, 10.1111/mmi.12633
Hoischen, 1990, Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum, J. Bacteriol., 172, 3409, 10.1128/jb.172.6.3409-3416.1990
Hu, 2019, A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts, J. Funct.Foods, 62, 10.1016/j.jff.2019.103520
Ikeda, 2017, In vivo roles of fatty acid biosynthesis enzymes in biosynthesis of biotin and α-lipoic acid in Corynebacterium glutamicum, Appl. Environ. Microbiol., 83, 10.1128/AEM.01322-17
Ikeda, 2003, The Corynebacterium glutamicum genome: features and impacts on biotechnological processes, Appl. Microbiol. Biotechnol., 62, 99, 10.1007/s00253-003-1328-1
Ikeda, 2021, A futile metabolic cycle of fatty acyl coenzyme A (acyl-CoA) hydrolysis and resynthesis in Corynebacterium glutamicum and its disruption leading to fatty acid production, Appl. Environ. Microbiol., 87, 10.1128/AEM.02469-20
Ikeda, 2020, Recent advances in amino acid production, vol. 23, 175
Irzik, 2014, Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum, J. Biotechnol., 192, 96, 10.1016/j.jbiotec.2014.10.031
Jovanovic, 2021, Microbial production of polyunsaturated fatty acids−high-value ingredients for aquafeed, superfoods, and pharmaceuticals, Curr. Opin. Biotechnol., 69, 199, 10.1016/j.copbio.2021.01.009
Kamisaka, 2015, Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 99, 201, 10.1007/s00253-014-6083-y
Kassab, 2019, Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids, Microb. Cell Factories, 18, 163, 10.1186/s12934-019-1217-7
Kawaguchi, 1977, Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex, Proc. Natl. Acad. Sci. U.S.A., 74, 3180, 10.1073/pnas.74.8.3180
Kim, 2019, Engineering of an oleaginous bacterium for the production of fatty acids and fuels, Nat. Chem. Biol., 15, 721, 10.1038/s41589-019-0295-5
Kim, 2018, Rewiring FadR regulon for the selective production of ω-hydroxy palmitic acid from glucose in Escherichia coli, Metab. Eng., 47, 414, 10.1016/j.ymben.2018.04.021
Kimura, 1997, A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin, Bioehcm. Biophys. Res. Commun., 234, 157, 10.1006/bbrc.1997.6613
Koeberle, 2016, Stearoyl-CoA desaturase-1 and adaptive stress signaling, Biochim. Biophys. Acta, 1861, 1719, 10.1016/j.bbalip.2016.08.009
Kolouchová, 2015, New yeast-based approaches in production of palmitoleic acid, Bioresour. Technol., 192, 726, 10.1016/j.biortech.2015.06.048
Ledesma-Amaro, 2016, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab. Eng., 38, 38, 10.1016/j.ymben.2016.06.004
Li, 2019, Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory, J. Ind. Microbiol. Biotechnol., 46, 783, 10.1007/s10295-019-02156-8
Liebl, 1989, Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media, Appl. Microbiol. Biotechnol., 32, 205, 10.1007/BF00165889
Liu, 2020, Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering, Curr. Opin. Biotechnol., 62, 7, 10.1016/j.copbio.2019.07.005
Liu, 2019, Food-grade expression of an iron-containing acid urease in Bacillus subtilis, J. Biotechnol., 293, 66, 10.1016/j.jbiotec.2019.01.012
Liu, 2011, Fatty acid production in genetically modified cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 108, 6899, 10.1073/pnas.1103014108
Martin, 2003, Ribosomal RNA and ribosomal proteins in corynebacteria, J. Biotechnol., 104, 41, 10.1016/S0168-1656(03)00160-3
Meesapyodsuk, 2012, The front-end desaturase: structure, function, evolution, and biotechnological use, Lipids, 47, 227, 10.1007/s11745-011-3617-2
Mitsuhashi, 2004, A gene homologous to β-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions, Appl. Microbiol. Biotechnol., 63, 592, 10.1007/s00253-003-1402-8
Moche, 2003, Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme Δ9-staeroyl-acyl carrier protein desaturase, J. Biol. Chem., 278, 25072, 10.1074/jbc.M301662200
Morishima, 1987, Active site organization of bacterial type I fatty acid synthetase, J. Biochem., 102, 1451, 10.1093/oxfordjournals.jbchem.a122191
Müller, 2020, CO2/HCO3- accelerates iron reduction through phenolic compounds, mBio, 11, 10.1128/mBio.00085-20
Nachtschatt, 2020, Integral membrane fatty acid desaturases: a review of biochemical, structural, and biotechnological advances, Eur. J. Lipid Sci. Technol., 122, 10.1002/ejlt.202000181
Nakunst, 2007, The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes, J. Bacteriol., 189, 4696, 10.1128/JB.00382-07
Nickel, 2010, The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate, Mol. Microbiol., 78, 253, 10.1111/j.1365-2958.2010.07337.x
Oguiza, 1995, Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum, J. Bacteriol., 177, 465, 10.1128/jb.177.2.465-467.1995
Ohnishi, 2002, A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant, Appl. Microbiol. Biotechnol., 58, 217, 10.1007/s00253-001-0883-6
Okazaki, 1967, L-Glutamic acid fermentation part II. The production of L-glutamic acid by an oleic acid-requiring mutant, Agric. Biol. Chem., 31, 1314, 10.1271/bbb1961.31.1314
Park, 2018, Optimization of odd chain fatty acid production by Yarrowia lipolytica, Biotechnol. Biofuels, 11, 158, 10.1186/s13068-018-1154-4
Pérard, 2018, Iron–sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding, J. Biol. Inorg. Chem., 23, 581, 10.1007/s00775-017-1527-3
Radmacher, 2005, Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum, Microbiology, 151, 2421, 10.1099/mic.0.28012-0
Rigouin, 2017, Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase, ACS Synth. Biol., 6, 1870, 10.1021/acssynbio.7b00034
Schmitt, 1995, Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, Infect. Immun., 63, 4284, 10.1128/iai.63.11.4284-4289.1995
Schweizer, 2011, Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production, Arch. Microbiol., 193, 227, 10.1007/s00203-010-0665-6
Steen, 2010, Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, 463, 559, 10.1038/nature08721
Takeno, 2018, The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains, Appl. Microbiol. Biotechnol., 102, 10603, 10.1007/s00253-018-9395-5
Takeno, 2007, Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 75, 1173, 10.1007/s00253-007-0926-8
Takeno, 2013, Development of fatty acid-producing Corynebacterium glutamicum strains, Appl. Environ. Microbiol., 79, 6776, 10.1128/AEM.02003-13
Tan, 2017, Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF, Microb. Cell Factories, 16, 38, 10.1186/s12934-017-0650-8
von Boeselager, 2018, Cytometry meets next-generation sequencing -RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum, Sci. Rep., 8
Wang, 2018, Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel, Bioresour. Technol., 270, 30, 10.1016/j.biortech.2018.09.016
Wang, 2016, Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes, Bioproc. Biosyst. Eng., 39, 1589, 10.1007/s00449-016-1633-6
Wennerhold, 2006, The DtxR regulon of Corynebacterium glutamicum, J. Bacteriol., 188, 2907, 10.1128/JB.188.8.2907-2918.2006
Wu, 2012, Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry, Prog. Lipid Res., 51, 340, 10.1016/j.plipres.2012.05.001
Xu, 2013, Modular optimization of multi-gene pathways for fatty acids production in E. coli, Nat. Commun., 4, 1409, 10.1038/ncomms2425
Yan, 2020, Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals, Metab. Eng., 58, 35, 10.1016/j.ymben.2019.04.009
Yang, 2011, Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes, Lipids Health Dis., 10, 120, 10.1186/1476-511X-10-120
Zhang, 2012, Enhancing fatty acid production by the expression of the regulatory transcription factor FadR, Metab. Eng., 14, 653, 10.1016/j.ymben.2012.08.009
Zhang, 2011, Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases, Metab. Eng., 13, 713, 10.1016/j.ymben.2011.09.007
Zhang, 2022, Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae, Biochem. Eng. J., 181, 10.1016/j.bej.2022.108402
Zhou, 2017, Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid, Bioresour. Technol., 239, 250, 10.1016/j.biortech.2017.05.045
Zhou, 2019, Comparison of lipid and palmitoleic acid induction of Tribonema minus under heterotrophic and phototrophic regimes by using high-density fermented seeds, Int. J. Mol. Sci., 20, 4356, 10.3390/ijms20184356
Zhou, 2021, Evaluating the effect of cultivation conditions on palmitoleic acid-rich lipid production by Scheffersomyces segobiensis DSM 27193, Biofuels Bioprod. Bioref., 15, 1859, 10.1002/bbb.2286
Zhou, 2016, Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories, Nat. Commun., 7, 10.1038/ncomms11709
Zhu, 2006, Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa, Mol. Microbiol., 60, 260, 10.1111/j.1365-2958.2006.05088.x