Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kỹ thuật chuyển hóa của Escherichia coli để sản xuất succinat từ thủy phân gỗ trong điều kiện kỵ khí
Tóm tắt
Thật sự có sự quan tâm lớn về kinh tế trong việc sản xuất succinat từ các nguồn carbon có chất lượng thấp, chẳng hạn như thủy phân từ sinh khối lignocellulosic, chủ yếu chứa glucose và xylose. Việc vô hiệu hóa hệ thống hấp thu glucose PtsG đã được đánh giá để sản xuất succinat từ các nguồn thức ăn giàu xylose. Các chủng với việc tích hợp các mô-đun sản xuất succinat vào nhiễm sắc thể của Escherichia coli đã được xây dựng. Những chủng này có hiệu suất sản xuất succinat tốt hơn so với chủng FZ560 mang plasmid pHL413KF1. Việc sử dụng glucose đã được nâng cao ở FZ661T bằng cách điều chỉnh operon gal để cho phép sử dụng hiệu quả glucose ở nồng độ cao trong thủy phân từ sinh khối gỗ. Đến 906,7 mM (107,0 g/L) succinat đã được sản xuất từ hỗn hợp đường trong quá trình lên men không liên tục và hơn 461,7 mM (54,5 g/L) succinat đã được sản xuất từ thủy phân gỗ trong quá trình lên men theo mẻ. Trong nghiên cứu này, FZ661T đã có khả năng sản xuất succinat từ thủy phân gỗ trong môi trường tối thiểu một cách hiệu quả, làm cho nó trở thành một lựa chọn hấp dẫn cho các ứng dụng công nghiệp trong sản xuất succinat.
Từ khóa
#Escherichia coli #sản xuất succinat #thủy phân gỗ #đường hỗn hợp #lên men nhớtTài liệu tham khảo
Ahn JH, Jang Y-S, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66
Ahn JH, Jang Y-S, Yup Lee S (2017) Succinic acid. In: Wittmann C, Liao JC (eds) Industrial biotechnology: products and processes, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 505–544. https://doi.org/10.1002/9783527807833.ch17
Balzer GJ, Thakker C, Bennett GN, San K-Y (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD + -dependent formate dehydrogenase. Metab Eng 20:1–8
Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12:409–419
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554
Bradfield MF, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 8:181
Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413
Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800
Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624
Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Factories 4:14
Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694
Huang B, Yang H, Fang G, Zhang X, Wu H, Li Z, Ye Q (2018) Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnol Bioeng 115:943–954
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Lab (NREL), Golden
Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514
Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460
Lee P, Lee S, Hong S, Chang H, Park S (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114
Li Q, Huang B, He Q, Lu J, Li X, Li Z, Wu H, Ye Q (2018) Production of succinate from simply purified crude glycerol by engineered Escherichia coli using two-stage fermentation. Bioresour Bioprocess 5:41
Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5:1299–1307
Loman AA, Ju L-K (2017) Enzyme-based processing of soybean carbohydrate: recent developments and future prospects. Enzyme Microb Technol 106:35–47
Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93:2455–2462
Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404. https://doi.org/10.1007/s10529-006-9252-y
McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740
Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, Wang X (2017) Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci 114:7349–7354. https://doi.org/10.1073/pnas.1700345114
Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361
St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE (2013) One-step cloning and chromosomal integration of DNA. ACS Synth Biol 2:537–541
Steinsiek S, Bettenbrock K (2012) Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J Bacteriol 194:5897–5908
Thakker C, Martínez I, San KY, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7:213–224
Thakker C, San K-Y, Bennett GN (2013) Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresour Technol 130:398–405
Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760
Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass: volume-I—Results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab, Golden
Wu H, Lee J, Karanjikar M, San K-Y (2014) Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 169:119–125
Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T (2015) Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem 50:341–346
Zhu F, Wang Y, San KY, Bennett GN (2018) Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 115:1743–1754