Kỹ thuật chuyển hóa của Escherichia coli để sản xuất succinat từ thủy phân gỗ trong điều kiện kỵ khí

Oxford University Press (OUP) - Tập 47 - Trang 223-232 - 2020
Fayin Zhu1, Chengqiang Wang2,3, Ka-Yiu San2,4, George N. Bennett1,4
1Department of Biosciences, Rice University, Houston, USA
2Department of Bioengineering, Rice University, Houston, USA
3College of Life Sciences, Shandong Agricultural University, Taian, People’s Republic of China
4Department of Chemical and Biomolecular Engineering, Rice University, Houston, USA

Tóm tắt

Thật sự có sự quan tâm lớn về kinh tế trong việc sản xuất succinat từ các nguồn carbon có chất lượng thấp, chẳng hạn như thủy phân từ sinh khối lignocellulosic, chủ yếu chứa glucose và xylose. Việc vô hiệu hóa hệ thống hấp thu glucose PtsG đã được đánh giá để sản xuất succinat từ các nguồn thức ăn giàu xylose. Các chủng với việc tích hợp các mô-đun sản xuất succinat vào nhiễm sắc thể của Escherichia coli đã được xây dựng. Những chủng này có hiệu suất sản xuất succinat tốt hơn so với chủng FZ560 mang plasmid pHL413KF1. Việc sử dụng glucose đã được nâng cao ở FZ661T bằng cách điều chỉnh operon gal để cho phép sử dụng hiệu quả glucose ở nồng độ cao trong thủy phân từ sinh khối gỗ. Đến 906,7 mM (107,0 g/L) succinat đã được sản xuất từ hỗn hợp đường trong quá trình lên men không liên tục và hơn 461,7 mM (54,5 g/L) succinat đã được sản xuất từ thủy phân gỗ trong quá trình lên men theo mẻ. Trong nghiên cứu này, FZ661T đã có khả năng sản xuất succinat từ thủy phân gỗ trong môi trường tối thiểu một cách hiệu quả, làm cho nó trở thành một lựa chọn hấp dẫn cho các ứng dụng công nghiệp trong sản xuất succinat.

Từ khóa

#Escherichia coli #sản xuất succinat #thủy phân gỗ #đường hỗn hợp #lên men nhớt

Tài liệu tham khảo

Ahn JH, Jang Y-S, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66 Ahn JH, Jang Y-S, Yup Lee S (2017) Succinic acid. In: Wittmann C, Liao JC (eds) Industrial biotechnology: products and processes, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 505–544. https://doi.org/10.1002/9783527807833.ch17 Balzer GJ, Thakker C, Bennett GN, San K-Y (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD + -dependent formate dehydrogenase. Metab Eng 20:1–8 Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12:409–419 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554 Bradfield MF, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 8:181 Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413 Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800 Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624 Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Factories 4:14 Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694 Huang B, Yang H, Fang G, Zhang X, Wu H, Li Z, Ye Q (2018) Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnol Bioeng 115:943–954 Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Lab (NREL), Golden Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717 Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514 Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460 Lee P, Lee S, Hong S, Chang H, Park S (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114 Li Q, Huang B, He Q, Lu J, Li X, Li Z, Wu H, Ye Q (2018) Production of succinate from simply purified crude glycerol by engineered Escherichia coli using two-stage fermentation. Bioresour Bioprocess 5:41 Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5:1299–1307 Loman AA, Ju L-K (2017) Enzyme-based processing of soybean carbohydrate: recent developments and future prospects. Enzyme Microb Technol 106:35–47 Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93:2455–2462 Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404. https://doi.org/10.1007/s10529-006-9252-y McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740 Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, Wang X (2017) Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci 114:7349–7354. https://doi.org/10.1073/pnas.1700345114 Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361 St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE (2013) One-step cloning and chromosomal integration of DNA. ACS Synth Biol 2:537–541 Steinsiek S, Bettenbrock K (2012) Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J Bacteriol 194:5897–5908 Thakker C, Martínez I, San KY, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7:213–224 Thakker C, San K-Y, Bennett GN (2013) Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresour Technol 130:398–405 Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760 Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass: volume-I—Results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab, Golden Wu H, Lee J, Karanjikar M, San K-Y (2014) Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 169:119–125 Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T (2015) Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem 50:341–346 Zhu F, Wang Y, San KY, Bennett GN (2018) Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 115:1743–1754