Metabolic engineering of Escherichia coli for direct production of vitamin C from D-glucose

Biotechnology for Biofuels and Bioproducts - Tập 15 - Trang 1-13 - 2022
Yong-Sheng Tian1,2, Yong-Dong Deng1,2, Wen-Hui Zhang1,2, Yu-Wang1,2, Jing Xu1,2, Jian-Jie Gao1,2, Bo-Wang1,2, Xiao-Yan Fu1,2, Hong-Juan Han1,2, Zhen-Jun Li1,2, Li-Juan Wang1,2, Ri-He Peng1, Quan-Hong Yao1,2
1Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
2Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China

Tóm tắt

Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process. While, 2-KLG, not vitamin C, is synthesized from nearly all current one-step fermentation processes. Vitamin C is naturally synthesized from glucose in Arabidopsis thaliana via a ten-step reaction pathway that is encoded by ten genes. The main objective of this study was to directly produce vitamin C from D-glucose in Escherichia coli by expression of the genes from the A. thaliana vitamin C biosynthetic pathway. Therefore, the ten genes of whole vitamin C synthesis pathway of A. thaliana were chemically synthesized, and an engineered strain harboring these genes was constructed in this study. The direct production of vitamin C from D-glucose based on one-step fermentation was achieved using this engineered strain and at least 1.53 mg/L vitamin C was produced in shaking flasks. The study demonstrates the feasibility of one-step fermentation for the production of vitamin C from D-glucose. Importantly, the one-step process has significant advantages compared with the currently used fermentation process: it can save multiple physical and chemical steps needed to convert D-glucose to D-sorbitol; it also does not involve the associated down-streaming steps required to convert 2-KLG into vitamin C.

Tài liệu tham khảo

Smirnoff N. L-Ascorbic acid biosynthesis. Vitam Horm. 2001;61:241–66. https://doi.org/10.1016/S0083-6729(01)61008-2. Naidu KA. Vitamin C in human health and disease is still amystery? An overview. Nutr J. 2003;2:7–12. Kuivanen J, Penttilä M, Richard P. Metabolic engineering of the fungal D-galacturonatepathway for L-ascorbic acid production. Microb Cell Fact. 2015;14(1):41–50. https://doi.org/10.1186/s12934-014-0184-2. Reichstein T, Grüssner A. Eine ergiebige synthese der 1-Ascorbinsäure (C-Vitamin). Helv Chim Acta. 1934;17:311–28. Zhou J, Du G, Chen J. Metabolic engineering of microorganisms for vitamin C production. In: Chen J, Quinn P, Wang X, editors. Reprogramming microbial metabolic pathways subcellular biochemistry. Dordrecht: Springer; 2013. p. 241–59. Hancock RD, Viola R. The use of micro-organisms for l-ascorbic acid production: current status and future perspectives. Appl Microbiol Biotechnol. 2001;56(5–6):567–76. https://doi.org/10.1007/s002530100723. Yin GL. Production of vitamin C precursor-2-keto-l-gulonic acid from d-sorbitol by mixed culture of microorganisms. Acta Microbiol Sin. 2001;41:709–15. Lazarus RA, Seymour JL, Stafford RK, Dennis MS, Anderson S. A biocatalytic approach to vitamin C production. In: Abramowicz DA, editor. Biocatalysis van nostrand reinhold catalysis series. Dordrecht: Springer; 1990. p. 135–55. Liu LM, Chen KJ, Zhang J, Liu J, Chen J. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol. 2011;156:182–7. https://doi.org/10.1016/j.jbiotec.2011.08.007. Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K. Metabolic engineering of plant L-Ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol. 2007;27(3):173–82. https://doi.org/10.1080/07388550701503626. Zeng W, Wang P, Li N, Li J, Zhou J. Production of 2-keto-l-gulonic acid by metabolically engineered Escherichia coli. Biores Technol. 2020;318:124069–78. https://doi.org/10.1016/j.biortech.2020.124069. Zou Y, Hu M, Lv Y, Wang Y, Song H, Yuan YJ. Enhancement of 2-keto-gulonic acid yield by serial subcultivation of co-cultures of bacillus cereus and ketogulonigenium vulgare. Biores Technol. 2013;132:370–3. https://doi.org/10.1016/j.biortech.2012.10.151. Conklin PL, Pallanca JE, Last RL, Smirnoff N. L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 1997;115:1277–85. https://doi.org/10.1104/pp.115.3.1277. Conklin PL, Nprris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA. 1999;96:4198–203. https://doi.org/10.1073/pnas.96.7.4198. Smirnoff N, Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol. 2000;35:291–314. https://doi.org/10.1080/07352680091139231. Wang P, Zeng W, Xu S, Du G, Zhou J, Chen J. Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv. 2018;36:1882–99. https://doi.org/10.1016/j.biotechadv.2018.07.006. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol. 2006;163(11):1179–84. https://doi.org/10.1016/j.jplph.2005.10.002. Sauer M, Branduardi P, Valli M, Porro D. Production of L-ascorbic acid bymetabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol. 2004;70(10):6086–91. https://doi.org/10.1128/AEM.70.10.6086-6091. Branduardi P, Fossati T, Sauer M, Pagani R, Porro D. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE. 2007;2(10):1092–100. https://doi.org/10.1371/journal.pone.0001092. Marx H, Mattanovich D, Sauer M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial Cell Fact. 2008;7(1):1–11. https://doi.org/10.1186/1475-2859-7-23. Fang H, Dong L, Jie K, Jiang P, Zhang D. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun. 2018;9(1):4917–27. https://doi.org/10.1101/394338. Rosa J, Colombo LT, Alvim M, Avon Ce N, Passos F. Metabolic engineering of kluyveromyces lactis for l-ascorbic acid (vitamin C) biosynthesis. Microb Cell Fact. 2013;12(1):1–13. https://doi.org/10.1186/1475-2859-12-59. Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10(1):2142–54. https://doi.org/10.1038/s41467-019-09848-w. Wang B, Gao J, Xu J, Fu X, Han H, Li Z, Yao QH. Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-chlorocatechol in Escherichia coli. J Hazard Mater. 2021;419:126428–40. https://doi.org/10.1016/j.jhazmat.2021.126428. Lim HN, Lee Y, Hussein R. Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci USA. 2011;108:10626–31. https://doi.org/10.1073/pnas.1105692108. Dhakal D, Chaudhary AK, Yi JS, Pokhrel AR, Shrestha B, Parajuli P, Shrestha A, Yamaguchi T, Jung HJ, Kim SY, Kim BG, Sohng JK. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol. 2016;100:9917–31. https://doi.org/10.1007/s00253-016-7705-3. Zorrilla López U, Masip G, Arjó G, Bai C, Banakar R, Bassie L. Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol. 2013;57:565–76. https://doi.org/10.1387/ijdb.130162pc. Valpuesta V, Botella MA. Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci. 2005;9(12):573–7. https://doi.org/10.1016/j.tplants.2004.10.002. Zhou M, Bi Y, Ding M, Yuan Y. One-step biosynthesis of vitamin c in Saccharomyces cerevisiae. Front Microbiol. 2021;12:643472–83. https://doi.org/10.3389/fmicb.2021.643472. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin in Escherichia coli. PLoS ONE. 2009;4:4489–98. https://doi.org/10.1371/journal.pone.0004489. Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence. Nucl Acids Res. 2004;32:98–106. https://doi.org/10.1093/nar/gnh094. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y. PCR-based accurate synthesis of long DNA sequences. Nat Protoc. 2006;1:791–7. https://doi.org/10.1038/nprot.2006.103. Peng RH, Xiong AS, Yao QH. A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol. 2006;73:234–40. https://doi.org/10.1007/s00253-006-0583-3. Tian YS, Wang B, Xu J, Fu XY, Gao JJ, Yao QH, Peng RH. Metabolic engineering of rice endosperm for betanin biosynthesis. New Phytol. 2020;225(5):1915–22. https://doi.org/10.1111/nph.16323. Wang B, Xu J, Gao J, Fu X, Han H, Li Z, Yao QH. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater. 2019;373:29–38. https://doi.org/10.1016/j.jhazmat.2019.03.055. Fieschko J, Ritch T, Bengston D, Fenton D, Mann M. The relationship between cell dry weight concentration and culture turbidity for a recombinant Escherichia coli k12 strain producing high levels of human alpha interferon analogue. Biotechnol Prog. 2010;1(3):205–8. https://doi.org/10.1002/btpr.5420010310.