Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Siegel R.L.; Miller K.D.; Fuchs H.E.; Jemal A.; Cancer Statistics, 2021. CA Cancer J Clin 2021,71(1),7-33
Siegel R.L.; Miller K.D.; Goding Sauer A.; Colorectal cancer statistics, 2020. CA Cancer J Clin 2020,70(3),145-164
Joachim C.; Macni J.; Drame M.; Overall survival of colorectal cancer by stage at diagnosis. Medicine (Baltimore) 2019,98(35),e16941
La Vecchia S.; Sebastián C.; Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biol 2020,98,63-70
Nenkov M.; Ma Y.; Gaßler N.; Chen Y.; Metabolic reprogramming of colorectal cancer cells and the microenvironment: Implication for therapy. Int J Mol Sci 2021,22(12),6262
Vander Heiden M.G.; DeBerardinis R.J.; Understanding the intersections between metabolism and cancer biology. Cell 2017,168(4),657-669
Sun L.; Suo C.; Li S.; Zhang H.; Gao P.; Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018,1870(1),51-66
Song Y.; Zhang S.; Guo X.; Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 2013,339(1),70-81
Rodríguez-Colman M.J.; Schewe M.; Meerlo M.; Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 2017,543(7645),424-427
Schell J.C.; Olson K.A.; Jiang L.; A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 2014,56(3),400-413
Schell J.C.; Wisidagama D.R.; Bensard C.; Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 2017,19(9),1027-1036
Shao Q.; Wang L.; Yuan M.; Jin X.; Chen Z.; Wu C.; TIGIT induces (CD3+) T cell dysfunction in colorectal cancer by inhibiting glucose metabolism. Front Immunol 2021,12,688961
Zhang D.; Wang Y.; Shi Z.; Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep 2015,10(8),1335-1348
Zafari N.; Velayati M.; Nassiri M.; Pharmacological targeting of epithelial-to-mesenchymal transition in colorectal cancer. Curr Pharm Des 2022,28(28),2298-2311
Gong J.; Lin Y.; Zhang H.; Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis 2020,11(4),267
Scheurlen K.M.; Billeter A.T.; O’Brien S.J.; Galandiuk S.; Metabolic dysfunction and early‐onset colorectal cancer-How macrophages build the bridge. Cancer Med 2020,9(18),6679-6693
Qu D.; Shen L.; Liu S.; Chronic inflammation confers to the metabolic reprogramming associated with tumorigenesis of colorectal cancer. Cancer Biol Ther 2017,18(4),237-244
Di Franco S.; Bianca P.; Sardina D.S.; Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nat Commun 2021,12(1),5006
Wang B.; Rong X.; Palladino E.N.D.; Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 2018,22(2),206-220.e4
Beyaz S.; Mana M.D.; Roper J.; High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 2016,531(7592),53-58
Yu S.; Zang W.; Qiu Y.; Liao L.; Zheng X.; Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene 2022,41(1),46-56
Baba Y.; Nosho K.; Shima K.; HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 2010,176(5),2292-2301
Chen C.; Pore N.; Behrooz A.; Ismail-Beigi F.; Maity A.; Regulation of glut1 mRNA by hypoxia-inducible factor-1. J Biol Chem 2001,276(12),9519-9525
Mimura I.; Nangaku M.; Kanki Y.; Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012,32(15),3018-3032
Zhdanov A.V.; Okkelman I.A.; Collins F.W.J.; Melgar S.; Papkovsky D.B.; A novel effect of DMOG on cell metabolism: Direct inhibition of mitochondrial function precedes HIF target gene expression. Biochim Biophys Acta Bioenerg 2015,1847(10),1254-1266
Wei L.; Zhou Y.; Yao J.; Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget 2015,6(18),16198-16214
Andreucci E.; Peppicelli S.; Carta F.; Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. J Mol Med (Berl) 2017,95(12),1341-1353
Feron O.; Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 2009,92(3),329-333
Lee M.; Yoon J.H.; Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015,6(3),148-161
Fu Y.; Liu S.; Yin S.; The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 2017,8(34),57813-57825
Chekulayev V.; Mado K.; Shevchuk I.; Metabolic remodeling in human colorectal cancer and surrounding tissues: Alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep 2015,4,111-125
Kaldma A.; Klepinin A.; Chekulayev V.; An in situ study of bioenergetic properties of human colorectal cancer: The regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Int J Biochem Cell Biol 2014,55,171-186
Chiavarina B.; Whitaker-Menezes D.; Martinez-Outschoorn U.E.; Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 2011,12(12),1101-1113
Li F.; Simon M.C.; Cancer cells don’t live alone: Metabolic communication within tumor microenvironments. Dev Cell 2020,54(2),183-195
Hsu C.C.; Tseng L.M.; Lee H.C.; Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood) 2016,241(12),1281-1295
Xiang L.; Mou J.; Shao B.; Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis 2019,10(2),40
Miyo M.; Konno M.; Nishida N.; Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep 2016,6(1),38415
Sun X.; Zhan L.; Chen Y.; Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther 2018,3(1),8
Vellinga T.T.; Borovski T.; de Boer V.C.J.; SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res 2015,21(12),2870-2879
Wang Y.; Zeng Z.; Lu J.; CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 2018,37(46),6025-6040
Martínez-Reyes I.; Chandel N.S.; Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020,11(1),102
Owen O.E.; Kalhan S.C.; Hanson R.W.; The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002,277(34),30409-30412
Alberghina L.; Gaglio D.; Redox control of glutamine utilization in cancer. Cell Death Dis 2014,5(12),e1561
Huang F.; Zhang Q.; Ma H.; Lv Q.; Zhang T.; Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol 2014,7(3),1093-1100
Liu G.; Zhu J.; Yu M.; Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med 2015,13(1),144
Ciccarese F.; Ciminale V.; Escaping death: Mitochondrial redox homeostasis in cancer cells. Front Oncol 2017,7,117
DeBerardinis R.J.; Mancuso A.; Daikhin E.; Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007,104(49),19345-19350
Corbet C.; Pinto A.; Martherus R.; Santiago de Jesus J.P.; Polet F.; Feron O.; Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 2016,24(2),311-323
Holla V.R.; Wu H.; Shi Q.; Menter D.G.; DuBois R.N.; Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer. J Biol Chem 2011,286(34),30003-30009
Wen Y.A.; Xing X.; Harris J.W.; Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis 2017,8(2),e2593
Zaytseva Y.Y.; Harris J.W.; Mitov M.I.; Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget 2015,6(22),18891-18904
Santhanam S.; Alvarado D.M.; Ciorba M.A.; Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 2016,167(1),67-79
Bishnupuri K.S.; Alvarado D.M.; Khouri A.N.; IDO1 and kynurenine pathway metabolites activate pi3k-akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res 2019,79(6),1138-1150
Mor A.; Tankiewicz-Kwedlo A.; Pawlak D.; Kynurenines as a novel target for the treatment of malignancies. Pharmaceuticals (Basel) 2021,14(7),606
Fruman D.A.; Chiu H.; Hopkins B.D.; Bagrodia S.; Cantley L.C.; Abraham R.T.; The PI3K pathway in human disease. Cell 2017,170(4),605-635
Robey R.B.; Hay N.; Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009,19(1),25-31
Comprehensive molecular characterization of human colon and rectal cancer. Nature Cancer Genome Atlas Network2012,487(7407),330-337
Atreya C.E.; Sangale Z.; Xu N.; PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med 2013,2(4),496-506
Roock W.D.; Vriendt V.D.; Normanno N.; Ciardiello F.; Tejpar S.; KRAS, BRAF, PIK3CA, and PTEN mutations: Implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011,12(6),594-603
Kato S.; Iida S.; Higuchi T.; PIK3CA mutation is predictive of poor survival in patients with colorectal cancer. Int J Cancer 2007,121(8),1771-1778
Samuels Y.; Wang Z.; Bardelli A.; High frequency of mutations of the PIK3CA gene in human cancers. Science 2004,304(5670),554
Ensan B.; Bathaei P.; Nassiri M.; The therapeutic potential of targeting key signaling pathways as a novel approach to ameliorating post-surgical adhesions. Curr Pharm Des 2022,28(18),1480-1500
Hoxhaj G.; Manning B.D.; The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020,20(2),74-88
Saxton R.A.; Sabatini D.M.; mTOR signaling in growth, metabolism, and disease. Cell 2017,168(6),960-976
Düvel K.; Yecies J.L.; Menon S.; Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010,39(2),171-183
Hao Y.; Samuels Y.; Li Q.; Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun 2016,7(1),11971
Inoki K.; Kim J.; Guan K.L.; AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012,52(1),381-400
Pavlides S.; Whitaker-Menezes D.; Castello-Cros R.; The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009,8(23),3984-4001
Kaemmerer E.; Jeon M.K.; Berndt A.; Liedtke C.; Gassler N.; Targeting Wnt signaling via notch in intestinal carcinogenesis. Cancers (Basel) 2019,11(4),555
Esen E.; Chen J.; Karner C.M.; Okunade A.L.; Patterson B.W.; Long F.; WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 2013,17(5),745-755
Pate K.T.; Stringari C.; Sprowl-Tanio S.; Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014,33(13),1454-1473
Dang C.V.; MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013,3(8),a014217
Serna-Blasco R.; Sanz-Álvarez M.; Aguilera Ó.; García-Foncillas J.; Targeting the RAS-dependent chemoresistance: The Warburg connection. Semin Cancer Biol 2019,54,80-90
Weinberg F.; Hamanaka R.; Wheaton W.W.; Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010,107(19),8788-8793
Zhang C.; Liu J.; Liang Y.; Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 2013,4(1),2935
Freed-Pastor W.A.; Mizuno H.; Zhao X.; Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012,148(1-2),244-258
Papandreou I.; Cairns R.A.; Fontana L.; Lim A.L.; Denko N.C.; HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006,3(3),187-197
Ellinghaus P.; Heisler I.; Unterschemmann K.; BAY 87‐2243, a highly potent and selective inhibitor of hypoxia‐induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2013,2(5),611-624
Koh M.Y.; Spivak-Kroizman T.; Venturini S.; Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α. Mol Cancer Ther 2008,7(1),90-100
Yin S.; Kaluz S.; Devi N.S.; Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with cofactors p300/CBP. Clin Cancer Res 2012,18(24),6623-6633
Baker L.C.J.; Boult J.K.R.; Walker-Samuel S.; The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 2012,106(10),1638-1647
Ban H.S.; Kim B.K.; Lee H.; The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death Dis 2017,8(6),e2843
Ban H.S.; Xu X.; Jang K.; A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLoS One 2016,11(9),e0162568
Park M.K.; Ji J.; Haam K.; Licochalcone A inhibits hypoxia-inducible factor-1α accumulation by suppressing mitochondrial respiration in hypoxic cancer cells. Biomed Pharmacother 2021,133,111082
Lu Y.; Wang B.; Shi Q.; Wang X.; Wang D.; Zhu L.; Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci Rep 2016,6(1),39123
Ji L.; Shen W.; Zhang F.; Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell Mol Biol Lett 2021,26(1),19
Peng M.; Darko K.O.; Tao T.; Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017,54,24-33
Cenigaonandia-Campillo A.; Serna-Blasco R.; Gómez-Ocabo L.; Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021,11(8),3595-3606
Aguilera O.; Muñoz-Sagastibelza M.; Torrejón B.; Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 2016,7(30),47954-47965
Liu W.; Fang Y.; Wang X.T.; Liu J.; Dan X.; Sun L.L.; Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev 2014,15(17),7037-7041
Huang C.Y.; Weng Y.T.; Li P.C.; Calcitriol Suppresses warburg effect and cell growth in human colorectal cancer cells. Life (Basel) 2021,11(9),963
Sieber-Frank J.; Stark H.J.; Kalteis S.; Treatment resistance analysis reveals GLUT‐1‐mediated glucose uptake as a major target of synthetic rocaglates in cancer cells. Cancer Med 2021,10(19),6807-6822
Li X.; Sun J.; Xu Q.; Oxymatrine inhibits colorectal cancer metastasis via attenuating pkm2-mediated aerobic glycolysis. Cancer Manag Res 2020,12,9503-9513
Wu H.; Cui M.; Li C.; Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells. J Agric Food Chem 2021,69(10),3060-3068
Huang X.; Hou Y.; Weng X.; Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis 2021,10(1),4
Tong J.; Xie G.; He J.; Li J.; Pan F.; Liang H.; Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol 2011,2011,1-7
Liang Y.; Hou L.; Li L.; Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2020,39(2),469-485
Arnold C.; Demuth P.; Seiwert N.; The mitochondrial disruptor devimistat (CPI-613®) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol Cancer Ther 2021
Jin L.; Kim E.Y.; Chung T.W.; Hemistepsin A suppresses colorectal cancer growth through inhibiting pyruvate dehydrogenase kinase activity. Sci Rep 2020,10(1),21940
Puri S.; Juvale K.; Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem 2020,199,112393
Yao Z.; Xie F.; Li M.; Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017,8(2),e2633
Curtis N.J.; Mooney L.; Hopcroft L.; Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget 2017,8(41),69219-69236
Benjamin D.; Robay D.; Hindupur S.K.; Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep 2018,25(11),3047-3058.e4
Naviglio S.; Sapio L.; Spina A.; Naviglio D.; Calogero A.; Naviglio S.; Lactic dehydrogenase and cancer an overview. Front Biosci 2015,20(8),1234-1249
Zhao Z.; Han F.; Yang S.; Wu J.; Zhan W.; Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt–mTOR signaling pathway. Cancer Lett 2015,358(1),17-26
Yang Y.; Su D.; Zhao L.; Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget 2014,5(23),11886-11896
Valvona C.; Fillmore H.; Oxamate, but not selective targeting of LDH-A, inhibits medulloblastoma cell glycolysis, growth and motility. Brain Sci 2018,8(4),56
Salgado-García R.; Coronel-Hernández J.; Delgado-Waldo I.; Negative regulation of ULK1 by microRNA-106a in autophagy induced by a triple drug combination in colorectal cancer cells in vitro. Genes (Basel) 2021,12(2),245
Chong D.; Ma L.; Liu F.; Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 2017,28(8),831-840
Ihrlund L.S.; Hernlund E.; Khan O.; Shoshan M.C.; 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2008,2(1),94-101
Liu W.; Li W.; Liu H.; Yu X.; Xanthohumol inhibits colorectal cancer cells via downregulation of hexokinases II-mediated glycolysis. Int J Biol Sci 2019,15(11),2497-2508
Li W.; Zheng M.; Wu S.; Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J Exp Clin Cancer Res 2017,36(1),58
Schcolnik-Cabrera A; Chavez-Blanco A; Dominguez-Gomez G; The combination of orlistat, lonidamine and 6-diazo-5-oxo-L norleucine induces a quiescent energetic phenotype and limits substrate flexibility in colon cancer cells. Oncol Lett 2020,20(3),3053-3060
Zhao J.; Zhou R.; Hui K.; Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget 2017,8(12),18832-18847
Cohen A.S.; Geng L.; Zhao P.; Combined blockade of EGFR and glutamine metabolism in preclinical models of colorectal cancer. Transl Oncol 2020,13(10),100828
Zhao Y.; Feng X.; Chen Y.; 5-fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers. Cancer Res 2020,80(21),4815-4827
Ventura R.; Mordec K.; Waszczuk J.; Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015,2(8),808-824
Zaytseva Y.Y.; Rychahou P.G.; Le A.T.; Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 2018,9(37),24787-24800
Shiragami R.; Murata S.; Kosugi C.; Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 2013,43(2),431-438
Lee K.H.; Lee M.S.; Cha E.Y.; Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 2017,15(4),2163-2173
Liu X.; Zhou W.; Zhang X.; Ding Y.; Du Q.; Hu R.; 1‐L‐MT, an IDO inhibitor, prevented colitis‐associated cancer by inducing CDC20 inhibition‐mediated mitotic death of colon cancer cells. Int J Cancer 2018,143(6),1516-1529
Shi J.; Liu C.; Luo S.; STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol 2021,366,104384
Qi Y.; Wang R.; Zhao L.; Celastrol suppresses tryptophan catabolism in human colon cancer cells as revealed by metabolic profiling and targeted metabolite analysis. Biol Pharm Bull 2018,41(8),1243-1250
Miao X.; Zhang Y.; Li Z.; Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy. Mol Ther Methods Clin Dev 2021,20,442-450
Shan Y.; Gao Y.; Jin W.; Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer. Cell Death Dis 2019,10(8),618
Kim M.S.; Cho H.I.; Yoon H.J.; JIB-04, a small molecule histone demethylase inhibitor, selectively targets colorectal cancer stem cells by inhibiting the wnt/β-catenin signaling pathway. Sci Rep 2018,8(1),6611
Jia Y.; Ma Z.; Liu X.; Metformin prevents DMH ‐induced colorectal cancer in diabetic rats by reversing the warburg effect. Cancer Med 2015,4(11),1730-1741
Hosono K.; Endo H.; Takahashi H.; Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog 2010,49(7),662-671
Alhourani A.H.; Tidwell T.R.; Bokil A.A.; Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep 2021,11(1),10487
Kang J.; Lee D.; Lee K.J.; Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers (Basel) 2022,14(12),2881
Mayer M.J.; Klotz L.H.; Venkateswaran V.; Metformin and prostate cancer stem cells: A novel therapeutic target. Prostate Cancer Prostatic Dis 2015,18(4),303-309
Geng H.W.; Yin F.Y.; Zhang Z.F.; Gong X.; Yang Y.; Butyrate suppresses glucose metabolism of colorectal cancer cells via GPR109a-AKT signaling pathway and enhances chemotherapy. Front Mol Biosci 2021,8,634874
Zafari N.; Velayati M.; Fahim M.; Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022,305,120760
Li X.; Tian R.; Liu L.; Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells. J Int Med Res 2020,48(8)
Wang G.; Yu Y.; Wang Y.Z.; Yin P.H.; Xu K.; Zhang H.; The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer. Artif Cells Nanomed Biotechnol 2020,48(1),1231-1249
Rodon J.; Argilés G.; Connolly R.M.; Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer 2021,125(1),28-37
Saunier E.; Antonio S.; Regazzetti A.; Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep 2017,7(1),6945
Howells L.M.; Berry D.P.; Elliott P.J.; Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 2011,4(9),1419-1425
Yamauchi S.; Matsuyama T.; Tokunaga M.; Kinugasa Y.; Minimally invasive surgery for colorectal cancer. Japan Med Assoc J 2021,4(1),17-23
Stewart C.L.; Warner S.; Ito K.; Cytoreduction for colorectal metastases: Liver, lung, peritoneum, lymph nodes, bone, brain. When does it palliate, prolong survival, and potentially cure? Curr Probl Surg 2018,55(9),330-379
Chakedis J.; Schmidt C.R.; Surgical treatment of metastatic colorectal cancer. Surg Oncol Clin N Am 2018,27(2),377-399
Ciombor K.K.; Bekaii-Saab T.; A Comprehensive review of sequencing and combination strategies of targeted agents in metastatic colorectal cancer. Oncologist 2018,23(1),25-34
Koi M.; Carethers J.M.; The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017,13(18),1633-1647
Wei T.T.; Lin Y.T.; Tang S.P.; Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene 2020,39(2),414-427
Zhang L.; Qiao X.; Chen M.; Ilexgenin A prevents early colonic carcinogenesis and reprogramed lipid metabolism through HIF1α/SREBP-1. Phytomedicine 2019,63,153011
Yun J.; Mullarky E.; Lu C.; Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015,350(6266),1391-1396
Chang C.K.; Chiu P.F.; Yang H.Y.; Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5-fluorouracil. J Med Chem 2021,64(8),4450-4461
Li Q.; Cao L.; Tian Y.; Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics 2018,17(8),1531-1545
Xi Y.; Jing Z.; Wei W.; Inhibitory effect of sodium butyrate on colorectal cancer cells and construction of the related molecular network. BMC Cancer 2021,21(1),127
Wang G.; Wang J.J.; Yin P.H.; New strategies for targeting glucose metabolism–mediated acidosis for colorectal cancer therapy. J Cell Physiol 2019,234(1),348-368
Kwan H.Y.; Yang Z.; Fong W.F.; Hu Y.M.; Yu Z.L.; Hsiao W.L.W.; The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 2013,48(2),182-192
Manerba M.; Di Ianni L.; Govoni M.; Roberti M.; Recanatini M.; Di Stefano G.; Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells. Eur J Pharm Sci 2017,96,37-44
Carr R.M.; Qiao G.; Qin J.; Jayaraman S.; Prabhakar B.S.; Maker A.V.; Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis. Cell Death Discov 2016,2(1),16067
Maher J.C.; Wangpaichitr M.; Savaraj N.; Kurtoglu M.; Lampidis T.J.; Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy- d -glucose. Mol Cancer Ther 2007,6(2),732-741
Lin H.; Zeng J.; Xie R.; Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med Chem Lett 2016,7(3),217-222
Torrens-Mas M.; Alorda-Clara M.; Martínez-Vigara M.; Xanthohumol reduces inflammation and cell metabolism in HT29 primary colon cancer cells. Int J Food Sci Nutr 2021,1-9
Drury J.; Rychahou P.G.; He D.; Inhibition of fatty acid synthase upregulates expression of CD36 to sustain proliferation of colorectal cancer cells. Front Oncol 2020,10,1185
Luo K.W.; Xia J.; Cheng B.H.; Gao H.C.; Fu L.W.; Luo X.L.; Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep (Oxf) 2021,9(1),59-70
Wang X.; Song K.S.; Guo Q.X.; Tian W.X.; The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003,66(10),2039-2047
Czumaj A.; Zabielska J.; Pakiet A.; In vivo effectiveness of orlistat in the suppression of human colorectal cancer cell proliferation. Anticancer Res 2019,39(7),3815-3822
Chuang H.Y.; Chang Y.F.; Hwang J.J.; Antitumor effect of orlistat, a fatty acid synthase inhibitor, is via activation of caspase-3 on human colorectal carcinoma-bearing animal. Biomed Pharmacother 2011,65(4),286-292
Wang C.; Xu C.; Sun M.; Luo D.; Liao D.; Cao D.; Acetyl-CoA carboxylase-α inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun 2009,385(3),302-306
Hu J.; Duan W.; Liu Y.; Ketamine inhibits aerobic glycolysis in colorectal cancer cells by blocking the NMDA receptor‐CaMK II‐c‐Myc pathway. Clin Exp Pharmacol Physiol 2020,47(5),848-856
Takamatsu M.; Hirata A.; Ohtaki H.; Inhibition of indoleamine 2,3‐dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice. Cancer Sci 2015,106(8),1008-1015
Chen J.; Shao R.; Li F.; PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2015,42(12),1317-1326
Chen J.; Shao R.; Li L.; Xu Z.P.; Gu W.; Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. Int J Nanomedicine 2014,9,3403-3411
Toda K.; Kawada K.; Iwamoto M.; Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia 2016,18(11),654-665
Hussain A.; Qazi A.K.; Mupparapu N.; Modulation of glycolysis and lipogenesis by novel PI3K selective molecule represses tumor angiogenesis and decreases colorectal cancer growth. Cancer Lett 2016,374(2),250-260
Yu H.; Zhang H.; Dong M.; Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Int J Oncol 2017,50(1),161-172
Chen G.Q.; Tang C.F.; Shi X.K.; Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget 2015,6(27),24148-24162
Wang Y.; Guo D.; He J.; Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: Anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun 2019,512(4),819-824
Tomimoto A.; Endo H.; Sugiyama M.; Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 2008,99(11),2136-2141
Wang H.; Zhao L.; Zhu L.T.; Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog 2014,53(S1)(Suppl. 1),E107-E118
Li Y.; Wang Y.; Liu Z.; Guo X.; Miao Z.; Ma S.; Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol 2020,11,273