Phân tích tổng hợp về Đa dạng Vi sinh vật được Nuôi cấy trong Các Bể Nuôi cấy Giả lập Vi sinh vật Ruột
Tóm tắt
Từ khóa
Tài liệu tham khảo
de Vos WM, Tilg H, Hul MV, Cani PD (2022) Gut microbiome and health: mechanistic insights. Gut 71:1020–1032. https://doi.org/10.1136/gutjnl-2021-326789
Byrne CS, Blunt D, Burn J et al (2019) A study protocol for a randomised crossover study evaluating the effect of diets differing in carbohydrate quality on ileal content and appetite regulation in healthy humans. F1000Research 8:258. https://doi.org/10.12688/f1000research.17870.2
Vuik F, Dicksved J, Lam S et al (2019) Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals. United Eur Gastroenterol J 7:897–907. https://doi.org/10.1177/2050640619852255
Hasan N, Yang H (2019) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7:e7502. https://doi.org/10.7717/peerj.7502
Thomas AM, Segata N (2019) Multiple levels of the unknown in microbiome research. BMC Biol 17:48. https://doi.org/10.1186/s12915-019-0667-z
Knight R, Vrbanac A, Taylor BC et al (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16:410–422. https://doi.org/10.1038/s41579-018-0029-9
Jiao J-Y, Liu L, Hua Z-S et al (2021) Microbial dark matter coming to light: challenges and opportunities. Natl Sci Rev 8:nwaa280. https://doi.org/10.1093/nsr/nwaa280
Neville BA, Forster SC, Lawley TD (2018) Commensal Koch’s postulates: establishing causation in human microbiota research. Curr Opin Microbiol 42:47–52. https://doi.org/10.1016/j.mib.2017.10.001
Forster SC, Kumar N, Anonye BO et al (2019) A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37:186–192. https://doi.org/10.1038/s41587-018-0009-7
Browne HP, Forster SC, Anonye BO et al (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546. https://doi.org/10.1038/nature17645
Almeida A, Mitchell AL, Boland M et al (2019) A new genomic blueprint of the human gut microbiota. Nature 568:499–504. https://doi.org/10.1038/s41586-019-0965-1
Costa J, Ahluwalia A (2019) Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00144
Renwick S, Ganobis CM, Elder RA et al (2021) Culturing human gut microbiomes in the laboratory. Annu Rev Microbiol. https://doi.org/10.1146/annurev-micro-031021-084116
Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326. https://doi.org/10.1038/nrmicro1857
Wu G, Zhang T, Gu M et al (2020) Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management. Water Sci Technol 82:1742–1757. https://doi.org/10.2166/wst.2020.443
Mabwi HA, Kim E, Song D-G et al (2021) Synthetic gut microbiome: advances and challenges. Comput Struct Biotechnol J 19:363–371. https://doi.org/10.1016/j.csbj.2020.12.029
Krause JL, Schaepe SS, Fritz-Wallace K et al (2020) Following the community development of SIHUMIx – a new intestinal in vitro model for bioreactor use. Gut Microbes 11:1116–1129. https://doi.org/10.1080/19490976.2019.1702431
Stolaki M, Minekus M, Venema K et al (2019) Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS Microbiol Ecol 95. https://doi.org/10.1093/femsec/fiz096
Molly K, Woestyne MV, Smet ID, Verstraete W (1994) Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200. https://doi.org/10.3109/08910609409141354
Venema K (2015) The TNO In Vitro Model of the Colon (TIM-2). In: Verhoeckx K, Cotter P, López-Expósito I, et al (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham (CH)
Barroso E, Cueva C, Peláez C et al (2015) Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT - Food Sci Technol 61:283–289. https://doi.org/10.1016/j.lwt.2014.12.014
Berner AZ, Fuentes S, Dostal A et al (2013) Novel polyfermentor intestinal model (PolyFermS) for controlled ecological studies: validation and effect of pH. PLoS One 8:2–11. https://doi.org/10.1371/journal.pone.0077772
Cordonnier C, Thévenot J, Etienne-Mesmin L et al (2015) Dynamic in vitro models of the human gastrointestinal tract as relevant tools to assess the survival of probiotic strains and their interactions with gut microbiota. Microorganisms 3:725–745. https://doi.org/10.3390/microorganisms3040725
Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187. https://doi.org/10.1007/s002489900072
García Mendez DF, Sanabria J, Wist J, Holmes E (2023) Effect of operational parameters on the cultivation of the gut microbiome in continuous bioreactors inoculated with feces: a systematic review. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.2c08146
Gálvez-Merchán Á, Min KH (Joseph), Pachter L, Booeshaghi AS (2022) Metadata retrieval from sequence databases with ffq. 2022.05.18.492548
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531
Dai D, Zhu J, Sun C et al (2022) GMrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison. Nucleic Acids Res 50:D777–D784. https://doi.org/10.1093/nar/gkab1019
Alberdi A, Gilbert MTP (2019) A guide to the application of Hill numbers to DNA-based diversity analyses. Mol Ecol Resour 19:804–817. https://doi.org/10.1111/1755-0998.13014
Isenring J, Bircher L, Geirnaert A, Lacroix C (2023) In vitro human gut microbiota fermentation models: opportunities, challenges, and pitfalls. Microbiome Res Rep 2:2. https://doi.org/10.20517/mrr.2022.15
Ma Z, (Sam), (2018) Chapter 8 - Measuring microbiome diversity and similarity with Hill numbers. In: Nagarajan M (ed) Metagenomics. Academic Press, pp 157–178
Loreau M (2010) The Challenges of Biodiversity Science. Excellence in Ecology. Book 17. International Ecology Institute, Oldendorf/Luhe
Średnicka P, Roszko MŁ, Popowski D et al (2023) Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci Rep 13:3026. https://doi.org/10.1038/s41598-023-29637-2
Lau JT, Whelan FJ, Herath I et al (2016) Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8:72. https://doi.org/10.1186/s13073-016-0327-7
Richarte V, Sánchez-Mora C, Corrales M et al (2021) Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder. Transl Psychiatry 11:1–7. https://doi.org/10.1038/s41398-021-01504-6
Lagkouvardos I, Lesker TR, Hitch TCA et al (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2
Smith BJ, Miller RA, Schmidt TM (2021) Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice. mSphere 6:e00851-21. https://doi.org/10.1128/msphere.00851-21
Shi M, Wei Y, Hu W et al (2018) The subgingival microbiome of periodontal pockets with different probing depths in chronic and aggressive periodontitis: a pilot study. Front Cell Infect Microbiol 8:124. https://doi.org/10.3389/fcimb.2018.00124
Quéméneur M, Erauso G, Frouin E et al (2019) Hydrostatic pressure helps to cultivate an original anaerobic bacterium from the Atlantis Massif subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01497
Chassaing B, Wiele TVD, Bodt JD et al (2017) Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66:1414–1427. https://doi.org/10.1136/gutjnl-2016-313099
Bellali S, Lagier J-C, Million M et al (2021) Running after ghosts: are dead bacteria the dark matter of the human gut microbiota? Gut Microbes 13:1–12. https://doi.org/10.1080/19490976.2021.1897208