Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự bất ổn trong dòng chảy vật liệu ở quy mô trung khi chịu biến dạng với tốc độ cao
Tóm tắt
Trong bài báo này, chúng tôi xem xét sự biến dạng với tốc độ cao trong các vật liệu rắn trong bối cảnh lý thuyết vận chuyển không địa phương, trình bày một sơ đồ ứng suất-biến dạng động với các phần đàn hồi và dẻo được xác định từ một điểm nhìn duy nhất, xác định các điều kiện tích lũy ứng suất xung, và đề xuất một mô hình toán học về sự trao đổi động lượng và năng lượng giữa các quy mô cùng một tiêu chí bất ổn cho dòng chảy dẻo tạm thời dưới tác động tải xung. Tiêu chí bất ổn cho sự biến dạng với tốc độ cao được xác minh qua ví dụ về tải xung của thép 30CrNi4Mo có độ bền cao.
Từ khóa
#biến dạng tốc độ cao #ứng suất-biến dạng #mô hình toán học #thép 30CrNi4Mo #bất ổn dòng chảy dẻoTài liệu tham khảo
Panin, V.E., Egorushkin, V.E., and Panin, A.V., Physical Mesomechanics of a Deformed Solid as a Multilevel System. I. Physical Fundamentals of the Multilevel Approach, Phys. Mesomech., 2006, vol. 9, no. 3–4, pp. 9–20.
Makarov, P.V., On the Hierarchical Nature of Deformation and Fracture of Solids and Media, Phys. Mesomech., 2004, vol. 7, no. 3–4, pp. 21–29.
Panin, S.V., Byakov, A.V., Grenke, V.V., Shakirov, I.V., and Yussif, S.A.K., Multiscale Monitoring of Localized Plastic Strain Evolution Stages in Notched Aluminum AA 2024 Alloy Tension Specimens by Acoustic Emission and Television-Optical Techniques, Phys. Mesomech., 2010, vol. 13, no. 3–4, pp. 203–211.
Grady, D.E. and Asay, J.R., Calculation of Thermal Trapping in Shock Deformation of Aluminum, J. Appl. Phys., 1982, vol. 53, no. 11, p. 73507354.
Ravichandran, G., Rosakis, A.J., Hodovany, J., and Rosakis, P., On the Convention of Plastic Work into Heat during High-Strain-Rate Deformation, in Shock Compression of CondensedMatter-2001: AIP Conf. Proc., Furnish, M.D., Thadhani, N.N., and Horie, Y-Y., Eds., Melville-New York: AIP Publishing LLC, 2002, vol. 620, pp. 557–562.
Asay, J.R. and Chhabildas, L.C., Determination of the Shear Strength of Shock Compressed 6061-T6 Aluminum, in Shock Waves and High-Strain-Rate Phenomena in Metals. Concepts and Applications, Meyers, M.A. and Murr, L.E., Eds., New York: Plenum Publishing Corporation, 1981.
Meshcheryakov, Yu.I. and Atrishenko, S.A., Dynamic Rotations in Crystals, Izv. Vyssh. Uchebn. Zaved. Fiz., 1992, no. 4, pp. 105–123.
Skotnikova, M.A., Strokina, M.I., Krylov, N.A., Meshcheryakov, Yu.I., and Divakov, A.K., Formation of Rotation in Titanium Alloys at Shock Loading, Shock Compression of Condensed Matter-2001: AIP Conf. Proc., Furnish, M.E., Gupta, Y.M., and Forbes, J.W., Eds., Melville: AIP Publishing LLC, 2003, vol. 605, pp. 609–612.
Yano, K. and Horie, Y-Y., Discrete-Element Modeling of Shock Compression of Polycrystalline Copper, Phys. Rev, 1999, vol. 59(21), pp. 13672–13680.
Koskello, A.C., Greenfield, S.R., Raisley, D.L., McClellan, K.J., Byler, D.D., Dickerson, R.M., Luo, S.N., Swift, D.C., Tonk, D.L., and Peralta, P.D., Dynamics of the Onset Damage in Metals under Shock Loading, Shock Compression of Condensed Matter-2007: AIP Conf. Proc., Melville: AIP Publishing LLC, 2008, vol. 955, pp. 557–560.
Grady, D.E. and Kipp, M.E., The Growth of Unstable Thermoplastic Shear with Application to Steady-Wave Shock Compression in Solids, J. Mech. Phys. Solids, 1987, vol. 35, no. 1, pp. 95–119.
Asay, J.R. and Barker, L.M., Interferometric Measurement of Shock-Induced Particle Velocity and Spatial Variations of Particle Velocity, J. Appl. Phys., 1974, vol. 45, no. 6, pp. 2540–2550.
Meshcheryakov, Yu.I. and Divakov, A.K., Multiscale Kinetics of Microstructure and Strain-Rate Dependence of Materials, DYMATJ, 1994, vol. 1, no. 4, pp. 271–287.
Landau, L.D. and Lifshits, E.M., Hydrodynamics, Moscow: Nauka-Fizmatgiz, 1988.
Hintze, T., Turbulence, New York: McGrow, 1962.
Antipov, M.V., Georgievskaya, A.B., Igonin, V.V., Lebedeva, M.O., Panov, K.N., Sadunov, V.D., Utenkov, A.A., and Yurtov, I.V., Research Results on Particle Ejection from Free Metal Surfaces under Shock Load, Proc. Int. Conf. 17thKharitonovReadings, Sarov, 2015, p. 339.
Georgievskaya, A.B. and Raevsky, V.A., Influence of the Shock Wave Profile on the Size Distribution of Particles Ejected from Free Metal Surfaces by a Shock Wave, Proc. Int. Conf. 17th Kharitonov Readings, Sarov, 2015, p. 340.
Khantuleva, T.A., Nonlocal Theory of Nonequilibrium Transfer Processes, St. Petersburg: St. Petersburg Univ., 2013.
Indeitsev, D.A., Meshcheryakov, Yu.I., Kuchmin, A.Yu., and Vavilov, D.A., Multiscale Model of Propagation of Steady Elastoplastic Waves, Dokl. Akad. Nauk. Mekh., 2014, vol. 458, no. 2, pp. 165–168.
Case, S. and Horie, Y., Discrete-Element Simulation of Shock Wave Propagation in Polycrystalline Copper, J. Mech. Phys. Solids, 2007, vol. 55, pp. 589–614.
Meshcheryakov, Yu.I. and Khantuleva, T.A., Nonequilibrium Processes in Condensed Media: Part 1. Experimental Studies in Light of Nonlocal Transport Theory, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 228–243.
Khantuleva, T.A. and Meshcheryakov, Yu.I., Nonequilibrium Processes in Condensed Media. Part 2. Structural Instability Induced by Shock Loading, Phys. Mesomech., 2016, vol. 19, no. 1, pp. 69–76.
Sazhko, A., Sud’enkov, Yu.V., Pivnev, V.A., and Yungmeister, D.A., Efficiency of Momentum Transfer on Impact of a Single and Double Rod, XIV Int. Christianovich Scientific School on Deformation and Fracture of Materials with Defects and Dynamic Phenomena in Rocks and Excavations, Alushta, Krym, Sept. 20–26, 2004.
Semenov, B.N., Sud’enkov, Yu.V., Shin, A.V., and Yungmeister, D.A., Simulation of Momentum Transfer on Impact of a Single and Double Rod, XIVInt. Christianovich Scientific School on Deformation and Fracture of Materials with Defects and Dynamic Phenomena in Rocks and Excavations, Alushta, Krym, Sept. 20–26, 2005.
Sud’enkov, Yu.V. and Nikitin, Yu.B., Multiple Quasi-Periodic Cleavage of NaCl under Pulsating and Alternating Shock Loads, Pis’ma Zh. Tekh. Fiz., 1993, vol. 19, no. 12, pp. 62–65.
Meshcheryakov, Yu.I., On Evolution and Catastrophic Modes of Energy Exchange in Dynamically Deformed Medium, Dokl. Ross. Akad. Nauk, 2005, no. 6, pp. 765–768.
Meshcheryakov, Yu.I., Divakov, A.K., Zhigacheva, N.I., Makarevich, I.P., and Barakhtin, B.K., Dynamic Structures in Shock-Loaded Copper, Phys. Rev. B, 2008, vol. 78, pp. 64301–64316.
Meshcheryakov, Yu.I., Divakov, A.K., Zhigacheva, N.I., and Barakhtin, B.K., Regimes of Interscale Momentum Exchange in Shock Deformed Solids, Int. J. Impact Eng., 2013, vol. 57, pp. 99–107.
Chhabildas, L.C., Trott, W.M., Reinhart, W.D., Cogar, J.R, and Mann, G.A., Incipient Spall Studies in Tantalum-Microstructural Effects, Workshop on Shock Dynamic and Non-Equilibrium Mesoscopic Fluctuations in Solids, Atlanta, GA, USA, June 23, 2001.
Asay, J.R., Shock Wave Paradigms and New Challenges, Shock Compression of Condensed Matter-2001: AIP Conf Proc, Furnish, M.D., Thadhani, N.N., Horie, Y-Y., Eds., Melville, New York: AIP Publishing LLC, 2002, vol. 950, pp. 26–35.