Cấu trúc mesopor trong sợi cellulose gỗ mềm chưa khô được nghiên cứu qua hấp phụ nitơ

Springer Science and Business Media LLC - Tập 21 - Trang 3193-3201 - 2014
Minoru Kimura1, Zi-Dong Qi1, Hayaka Fukuzumi1, Shigenori Kuga1, Akira Isogai1
1Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Tóm tắt

Hấp phụ nitơ được sử dụng để đặc trưng hóa cấu trúc mesopor trong các sợi cellulose gỗ mềm chưa khô. Sự cong khác biệt trong các isohen hấp phụ đã được quan sát trong khoảng áp suất hơi tương đối (P/P0) từ 0.5–0.42 cho các sợi cellulose chưa khô và bột gỗ mềm đã bị xử lý một phần lignin. Sự giảm thể tích hấp phụ N2 được quy cho sự tạo bọt của N2 ngưng tụ có mặt trong các mesopor hình thành qua việc loại bỏ lignin từ các thành tế bào gỗ trong quá trình xử lý lignin. Diện tích bề mặt riêng của bột gỗ mềm đã xử lý lignin đáng kể khoảng ~150 m2 g−1, cho thấy rằng trong các thành tế bào gỗ, 16 vi sợi cellulose riêng biệt, mỗi vi sợi có bề rộng 3–4 nm, tạo thành một bó sợi cellulose được bao quanh bởi một lớp lignin và hemicellulose mỏng. Phân tích các isohen hấp phụ N2 cho thấy rằng các mesopor trong các sợi cellulose gỗ mềm và bột gỗ mềm đã xử lý lignin một phần có các đỉnh dao động từ 4 đến 20 nm đường kính.

Từ khóa

#hấp phụ nitơ #cấu trúc mesopor #cellulose gỗ mềm #lignin #bột gỗ mềm #trị số áp suất hơi tương đối #diện tích bề mặt riêng #vi sợi cellulose

Tài liệu tham khảo

Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibrils with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278 Alince B, van de Ven TGM (1997) Porosity of swollen pulp fibers evaluated by polymer adsorption. In: Baker CF (ed) 11th Fundamental research symposium transactions on the fundamentals of papermaking materials, Cambridge. Pira International, Leatherhead, Surrey, UK, pp 771–788 Awano T, Takabe M, Fujita M, Daniel G (2000) Deposition of glucurono xylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79 Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbet B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–281 Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380 Brunauer S, Deming LSD, Deming WS, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732 Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154 Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17:329–338 Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417–423 de Boer JH (1958) The shape of capillaries. In: Everett DH, Stone FS (eds) The structure and properties of porous materials”. Butterworth, London, pp 68–94 de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga ThJ (1966) The t-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21:405–414 Duchesne I, Daniel G (2000) Changes in surface ultrastructure of Norway spruce fibres during kraft pulping—visualisation by field emission-SEM. Nordic Pulp Pap Res J 15:54–61 Eriksson M, Torgnysdotter A, Wågberg L (2006) Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind Eng Res Chem 45:5279–5286 Fahlen J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126 Fahlen J, Salmen L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438 Fan LT, Lee YH, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199 Fengel D (1970) Ultrastructural behaviour of cell wall polysaccharides. Tappi 53:497–503 Hanna RE (1971) The interpretation of high resolution electron micrographs of the cellulose elementary fibril. J Polym Sci Part C 36:409–413 Harada H (1965) Cellular ultrastructure of woody plants. Syracuse University Press, USA Haselton WR (1954) Gas adsorption by wood, pulp, and paper, the low-temperature adsorption of nitrogen, butane, and carbon dioxide by spruce and its components. TAPPI 37(9):404–412 Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. Bioresources 2:739–788 Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—An inherent property of kraft pulps. Polymer 42:3309–3314 Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110 Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459 Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85 Jacob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787 Jaroniec M, Kruk M (1999) Standard nitrogen adsorption data for characterization of nanoporous silicas. Langmuir 15:5410–5413 Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature–based materials. Angew Chem Int Ed 50:5438–5466 Landín M, Matínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 26:133–141 Li TQ, Henriksson U, Ödberg L (1993) Determination of pore sizes in wood cellulose fibers by 2H and 1H NMR. Nordic Pulp Pap Res J 8(3):326–330 Maloney TC, Paurapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25(12):430–436 Maloney TC, Paulapuro H, Stenius P (1998) Hydration and swelling of pulp fibers measured with differential scanning calorimetry. Nordic Pulp Pap Res J 13(1):31–36 Merchant MV (1957) A study of water-swollen cellulose fibers which have been liquid-exchanged and dried from hydrocarbons. TAPPI 40(9):771–781 Nakai K, Yoshida M, Sonoda J, Nakada Y, Hakuman M, Naono H (2010) High resolution N2 adsorption isotherms by graphitized carbon black and nongraphitized carbon black –αs–curves, adsorption enthalpies and entropies. J Colloid Interface Sci 351:507–514 Naono H, Hakuman M (1993) Analysis of porous texture by means of water vapor adsorption isotherm with particular attention to lower limit of hysteresis loop. J Colloid Interface Sci 158:19–26 Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700 Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders & porous solids, principles, methodology and applications. Academic Press, San Diego, pp 204–206 Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Paper Sci 24:99–103 Scallan AM (1978) The accommodation of water within pulp Fibres. In: Fibre-water interactions in paper making, Fundamental Res. Committee, ed., Tech. Div. BPBIF, UK, pp 9–27 Sing KSW (1970) Utilization of adsorption data in the BET region. In: Everett DH, Ottewill RH (eds) Surface area determination. Butterworths, London, pp 25–42 Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494 Stone JE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sulphite and kraft process. Pulp Pap Mag Can 69:289–293 Stone JE, Scallan AM, Abrahamson B (1968) Influence of beating on cell wall swelling and internal fibrillation. Svensk papperstidn 71(19):687–694 Suchy M, Virtanen J, Kontturi E, Vuorinen T (2010a) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520 Suchy M, Kontturi E, Vuorinen T (2010b) Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers. Biomacromolecules 11:2161–2168 Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168 Thode EF, Swanson JW, Becher JJ (1958) Nitrogen adsorption on solvent exchanged wood cellulose fibers: indications of “total” surface area and pore size distribution. J Phys Chem 62:1036–1039 Thommes M, Smarsly B, Groenewolt M, Ravikovith PI, Neimark AV (2006) Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22:756–764