Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tấm nanosheet TiO2 xốp với một lượng lớn các mặt {001} lộ ra như một vật chứa lưu huỳnh cho pin lithium–lưu huỳnh hiệu suất cao
Tóm tắt
Pin Li-S là một hệ thống lưu trữ năng lượng điện hóa hấp dẫn nhờ có mật độ năng lượng cao. Tuy nhiên, việc thương mại hóa nó đã bị ảnh hưởng lớn bởi vòng đời kém và hiệu suất tỷ lệ thấp, điều này được quy cho sự hòa tan của polysulfide và hiệu ứng shuttle của chúng. Trong nghiên cứu này, các hạt oxit titan với một lượng lớn các mặt {001} lộ ra (TDPEF) đã được chuẩn bị bằng phương pháp nhiệt độ cồn. TDPEF đã chuẩn bị đạt được diện tích bề mặt riêng tương đối cao là 92 m2 g−1 và thể tích lỗ 0,27 cm g−1. Lưu huỳnh được trộn với TDPEF để tạo thành hợp chất TDPEF/S qua quá trình khuếch tán nóng chảy. Hợp chất TDPEF/S thể hiện khả năng giữ lại dung lượng xả tuyệt vời là 80% sau 100 chu kỳ so với lưu huỳnh tinh khiết ở tỷ lệ dòng cao 0,5 C, và nó vẫn có dung lượng xả lên đến 530 mAh g−1 ngay cả ở tỷ lệ dòng 4 C.
Từ khóa
#pin lithium-lưu huỳnh #oxit titan #polysulfide #diện tích bề mặt riêng #dung lượng xảTài liệu tham khảo
Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787
Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Edit 52:13186–13200
Chen R, Zhao T, Wu F (2015) From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chem Commun 51(1):18–33
Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous Pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069
Ding B, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim Acta 107:78–84
Yuan LX, Feng J, Ai XP, Cao YL, Chen SL, Yang HX (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614
Ma XZ, Jin B, Wang HY, HouJZ ZXB, Wang HH, Xin PM (2015) S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem 736:127–131
Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408
Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim Acta 176:442–447
Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Mg0.6Ni0.4 O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries. J Alloy Compd 650:351–356
Wu HB, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem-Eur J 19(33):10804–10808
Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang JG, Liu J, Xiao J (2014) Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14(5):2345–2352
Bao W, Zhang Z, Zhou C, Lai Y, Li J (2014) Multi-walled carbon nanotubes@ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@ metal–organic framework for lithium sulfur battery. J Power Sources 248:570–576
Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J Power Sources 302:174–179
Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal–organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl Mater Inter 7(37):20999–21004
Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525
Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294
He Y, Fu Z, Zhou Q, Zhong M, Yuan L, Wei J, Zeng Y (2015) Fabrication and electrochemical behavior of a lithium-sulfur cell with a TiO2-sulfur-carbon aerogel-based cathode. Ionics 21(11):3065–3073
Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325
Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Gu HB (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta 2007(T129):62
Wang J, Yang J, Xie J, Xu NAIXIN (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965
Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181
Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Lee JY (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795
Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344
Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80(12):3157–3171
Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959
Zhang Z, Li Q, Zhang K, Chen W, Lai Y, Li J (2015) Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for Superior lithium–sulfur batteries. J Power Sources 290:159–167
Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Cui Y (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331
Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132(17):6124–6130
Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109(42):19560–19562
Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152–3153
Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348
Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17(11):2959–2965
Ding SJ, Chen JS, Wang ZY, Cheah YL, Madhavi S, Hu X, Lou XW (2011) TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. J Mater Chem 21(6):1677–1680
Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 Nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722
Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Zeng R (2012) Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J Mater Chem 22(12):5848–5854
Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418(6896):397–399
Lunell S, Stashans A, Ojamäe L, Lindström H, Hagfeldt A (1997) Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J Am Chem Soc 119(31):7374–7380