Tấm nanosheet TiO2 xốp với một lượng lớn các mặt {001} lộ ra như một vật chứa lưu huỳnh cho pin lithium–lưu huỳnh hiệu suất cao

Springer Science and Business Media LLC - Tập 20 - Trang 2161-2168 - 2016
Xiaolong Yang1, Xinye Qian1,2, Lina Jin1, Di Zhao1, Shanwen Wang1, Dewei Rao1, Shanshan Yao1, Xiangqian Shen1, Youyuan Zhou3, Xiaoming Xi3
1Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
2Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
3Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, Changsha, People’s Republic of China

Tóm tắt

Pin Li-S là một hệ thống lưu trữ năng lượng điện hóa hấp dẫn nhờ có mật độ năng lượng cao. Tuy nhiên, việc thương mại hóa nó đã bị ảnh hưởng lớn bởi vòng đời kém và hiệu suất tỷ lệ thấp, điều này được quy cho sự hòa tan của polysulfide và hiệu ứng shuttle của chúng. Trong nghiên cứu này, các hạt oxit titan với một lượng lớn các mặt {001} lộ ra (TDPEF) đã được chuẩn bị bằng phương pháp nhiệt độ cồn. TDPEF đã chuẩn bị đạt được diện tích bề mặt riêng tương đối cao là 92 m2 g−1 và thể tích lỗ 0,27 cm g−1. Lưu huỳnh được trộn với TDPEF để tạo thành hợp chất TDPEF/S qua quá trình khuếch tán nóng chảy. Hợp chất TDPEF/S thể hiện khả năng giữ lại dung lượng xả tuyệt vời là 80% sau 100 chu kỳ so với lưu huỳnh tinh khiết ở tỷ lệ dòng cao 0,5 C, và nó vẫn có dung lượng xả lên đến 530 mAh g−1 ngay cả ở tỷ lệ dòng 4 C.

Từ khóa

#pin lithium-lưu huỳnh #oxit titan #polysulfide #diện tích bề mặt riêng #dung lượng xả

Tài liệu tham khảo

Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787 Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Edit 52:13186–13200 Chen R, Zhao T, Wu F (2015) From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chem Commun 51(1):18–33 Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous Pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069 Ding B, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim Acta 107:78–84 Yuan LX, Feng J, Ai XP, Cao YL, Chen SL, Yang HX (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614 Ma XZ, Jin B, Wang HY, HouJZ ZXB, Wang HH, Xin PM (2015) S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem 736:127–131 Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408 Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim Acta 176:442–447 Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Mg0.6Ni0.4 O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries. J Alloy Compd 650:351–356 Wu HB, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem-Eur J 19(33):10804–10808 Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang JG, Liu J, Xiao J (2014) Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14(5):2345–2352 Bao W, Zhang Z, Zhou C, Lai Y, Li J (2014) Multi-walled carbon nanotubes@ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@ metal–organic framework for lithium sulfur battery. J Power Sources 248:570–576 Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J Power Sources 302:174–179 Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal–organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl Mater Inter 7(37):20999–21004 Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525 Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294 He Y, Fu Z, Zhou Q, Zhong M, Yuan L, Wei J, Zeng Y (2015) Fabrication and electrochemical behavior of a lithium-sulfur cell with a TiO2-sulfur-carbon aerogel-based cathode. Ionics 21(11):3065–3073 Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325 Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Gu HB (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta 2007(T129):62 Wang J, Yang J, Xie J, Xu NAIXIN (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965 Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181 Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Lee JY (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795 Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344 Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80(12):3157–3171 Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959 Zhang Z, Li Q, Zhang K, Chen W, Lai Y, Li J (2015) Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for Superior lithium–sulfur batteries. J Power Sources 290:159–167 Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Cui Y (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331 Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132(17):6124–6130 Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109(42):19560–19562 Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152–3153 Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348 Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17(11):2959–2965 Ding SJ, Chen JS, Wang ZY, Cheah YL, Madhavi S, Hu X, Lou XW (2011) TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. J Mater Chem 21(6):1677–1680 Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 Nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722 Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Zeng R (2012) Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J Mater Chem 22(12):5848–5854 Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418(6896):397–399 Lunell S, Stashans A, Ojamäe L, Lindström H, Hagfeldt A (1997) Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J Am Chem Soc 119(31):7374–7380