Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile

Revista Chilena de Historia Natural - Tập 87 Số 1 - 2014
Carla E. Brito1, Horacio E. Bown1, Juan Pablo Fuentes1, Nicolás Franck2, Jorge F. Perez‐Quezada3
1Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
2Centro de Estudios de Zonas Áridas, Universidad de Chile, Coquimbo, Chile
3Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armesto JJ, Arroyo MTK, Hinojosa LF: The mediterranean environment of Central Chile. In The physical geography of South America: 184–199. Edited by: Veblen TT, Young KR, Orme AR. Oxford University Press, United State of America; 2007.

Arroyo MTK, Marquet P, Marticorena C, Simonetti J, Cavieres LA, Squeo FA, Rozzi R: Chilean winter rainfall - Valdivian forests. In Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions: 99–103. Edited by: Mittermeier PRRA, Hoffmann M, Pilgrim J, Brooks T, Goettsch-Mittermeier C, Lamoreux J, Fonseca GAB. CEMEX, Mexico; 2004.

Baldocchi DD, Harley PC: Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest: II model testing and application. Plant Cell and Environment 1995, 18: 1157–1173. 10.1111/j.1365-3040.1995.tb00626.x

Benites J, Saintraint D, Morimoto YK: Degradación de tierras y producción agrícola en Argentina, Bolivia, Brasil, Chile y Paraguay: Erosión de Suelos en América Latina. Oficina Regional de la FAO para América Latina y el Caribe, Santiago; 1994.

Bernacchi CJ, Elsingsaas CP, Portis AR, Long SP: Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 2001, 24: 253–259. 10.1111/j.1365-3040.2001.00668.x

Bernacchi CJ, Portis AR, Nakano H, Von Caemmerer S, Long SP: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology 2002, 130: 1992–1998. 10.1104/pp.008250

Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1, 5- bisphosphate carboxylase oxygenase and the rate of respiration in the light: estimates from gas-exchange measurements on spinach. Planta 165:397–406

Cabrera M: Respuestas ecofisiológicas de plantas en ecosistemas de zonas con clima mediterráneo y ambientes de alta montaña. Rev Chil Hist Nat 2002, 75: 625–637. 10.4067/S0716-078X2002000300013

CONAF: Catastro y Evaluación de Recursos Vegetacionales Nativos de Chile. Proyecto CONAF-CONAMA-BIRF, Santiago, Chile; 1999.

De Lucia EH, Whitehead D, Clearwater MJ: The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum . Funct Plant Biol 2003, 30: 1197–1204. 10.1071/FP03141

Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell and Environment 27:137–153

Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA (2006) Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell andEnvironment 29:2168–2184

Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

Farquhar GD, Sharkey TD: Stomatal conductance and photosynthesis. Annual Review of Plant Physiology. 1982, 33: 317–345. 10.1146/annurev.pp.33.060182.001533

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

Field C, Mooney HA: The photosynthesis - nitrogen relationship in wild plants. In The economy of plant form and function. Edited by: Givnish TJ. Cambridge University Press, Cambridge; 1986:25–55.

Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C (3) plants. Plant Biol 2004, 6: 269–279. 10.1055/s-2004-820867

Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell and Environment 2007, 30: 1284–1298. 10.1111/j.1365-3040.2007.01700.x

Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriqui M, Diaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Galle A, Galmes J, Kodama N, Medrano H, Niinemets U, Peguero-Pina JJ, Pou A, Ribas-Carbo M, Tomas M, Tosens T, Warren CR: Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science 2012, 193: 70–84. doi:10.1016/j.plantsci.2012.05.009 10.1016/j.plantsci.2012.05.009

Gallé A, Flórez-Sarasa I, Aououad HE, Flexas J: The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles. J Exp Bot 2011, 62: 5207–5216. 10.1093/jxb/err233

Galmes J, Medrano H, Flexas J: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 2007, 175: 81–93. 10.1111/j.1469-8137.2007.02087.x

Genty B, Briantais JM, Baker NR: The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica Et Biophysica Acta 1989, 990: 87–92. 10.1016/S0304-4165(89)80016-9

Gotor B: Evaluación de parámetros fisiológicos y de Crecimiento en plantas de Quillaja saponaria Mol. bajo condiciones de déficit hídrico: Memoria para optar al título de Ingeniero Forestal. Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile; 2008.

Grassi G, Magnani F: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 2005, 28: 834–849. 10.1111/j.1365-3040.2005.01333.x

Grassi G, Meier P, Cromer R, Tompkins D, Jarvis PG: Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply. Plant Cell Environ 2002, 25: 1677–1688. 10.1046/j.1365-3040.2002.00946.x

Griffin KL, Tissue DT, Turnbull MH, Whitehead D (2000) The onset of photosynthetic acclimation to elevated CO2 partial pressure in field-grown Pinus radiata D: Don. after 4 years. Plant Cell Environ 23:1089–1098

Gu L, Sun Y: Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant, Cell and Environment 2014, 37: 1231–1249. 10.1111/pce.12232

Gulias J, Flexas J, Abadia A, Medrano H: Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris , an endemic Balearic species. Tree Physiol 2002, 22: 687–697. 10.1093/treephys/22.10.687

Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2 - reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth Res 27(3):169–178

Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2 and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60:2303–2314

Hogan KP, Whitehead D, Kallarackal J, Buwalda JG, Meekings J, Rogers GND (1996) Photosynthetic activity of leaves of Pinus radiata and Nothofagus fusca after 1 year of growth at elevated CO2. Aust J Plant Physiol 23(5):623–630

Jones HG: Plants and microclimate: a quantitative approach to environmental physiology. Cambridge University Press, Cambridge, UK; 1992.

Kellomaki S, Wang KY (1996) Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiol 16:765–772

Long SP, Bernacchi CJ: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? procedures and sources of error. J Exp Bot 2003, 54: 2393–2401. 10.1093/jxb/erg262

Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443

Manter DK, Kerrigan J: A/C-i curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot 2004, 55: 2581–2588. 10.1093/jxb/erh260

Mcmurtrie RE, Leuning R, Thomson WA, Wheeler AM (1992) A model of canopy photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange. For Ecol Manag 52:261–278

Montenegro G: Atlas de anatomía de especies vegetales autóctonas de la Zona Central. Ediciones Universidad Católica de Chile, Santiago; 1984.

Murray MB, Smith RI, Friend A, Jarvis PG (2000) Effect of elevated CO2 and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiol 20:421–434

Niinemets Ü, Díaz A, Flexas J, Galmés J, Warren R: Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 2009, 60: 2271–2282. 10.1093/jxb/erp063

Niinemets Ü, Wright I, Evans J: Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal Experimental Botany 2009, 60: 24333–22449.

Peisker M, Apel H (2001) Inhibition by light of CO2 evolution from dark respiration: comparison of two gas exchange methods. Photosynth Res 70:291–298

Pena-Rojas K, Aranda X, Fleck I (2004) Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Tree Physiol 24(7):813–822, Schreiber U, W Bilger & C Neubauer (1994) Chrorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: ED Schulze & MM Caldwell (eds) Ecophysiology of photosynthesis: 49–70. Springer Verlag, Berlin

Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234

Prioul JL, Chartier P (1977) Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot 4:789–800

R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.

Ripullone F, Grassi G, Lauteri M, Borghetti M: Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus euroamericana in a mini-stand experiment. Tree Physiol 2003, 23: 137–144. 10.1093/treephys/23.2.137

Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. Plant Physiol 84:959–963

Schreiber U, Bilger W, Neubauer C: Chrorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of photosynthesis: 49–70. Edited by: Schulze ED, Caldwell MM. Springer Verlag, Berlin; 1994.

Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:54–105

Singsaas EL, Ort DR, Delucia EH (2004) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ 27:41–50

Takashima T, Hikosaka K, Hirose T: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 2004, 27: 1047–1054. 10.1111/j.1365-3040.2004.01209.x

Terashima I, Hanba YT, Tholen D, Niinemets Ü: Leaf functional anatomy in relation to photosynthesis. Plant Physiol 2011, 155: 108–116. 10.1104/pp.110.165472

Tholen D, Ethier G, Genty B, Pepin S, Zhu XG: Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 2012, 35: 2087–2103. 10.1111/j.1365-3040.2012.02538.x

Tomas M, Flexas J, Copolovici L, Galmes J, Hallik L, Medrano H, Ribas-Carbo M, Tosens T, Vislap V, Niinemets U: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany 2013,64(8):2269–2281. doi:10.1093/jxb/ert086 10.1093/jxb/ert086

Tosens T, Niinemets Ü, Westoby M, Wright IJ: Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 2012, 63: 5105–5119. 10.1093/jxb/ers171

Turnbull MH, Tissue DT, Griffin KL, Rogers GND, Whitehead D (1998) Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D: Don. is related to age of needles. Plant Cell Environ 21:1019–1028

Turnbull MH, Murthy R, Griffin KL: The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides . Plant, Cell and Environment 2002, 25: 1729–1737. 10.1046/j.1365-3040.2002.00947.x

von Caemmerer S: Biochemical models of leaf photosynthesis. Victoria, Australia, CSIRO Publishing, Collingwood; 2000.

von Caemmerer S, Evans JR (1991) Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18:287–305

von Caemmerer S, Farquhar GD: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153: 376–387. 10.1007/BF00384257

Walcroft AS, Whitehead D, Silvester WB, Kelliher FM: The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don Plant, Cell & Environment 1997, 20: 1338–1348. 10.1046/j.1365-3040.1997.d01-31.x

Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB: Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana : comparisons to Nicotiana tabacum . Plant Cell Environ 2013, 36: 2108–2119. 10.1111/pce.12166

Warren CR (2004) The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J Exp Bot 55:2313–2321

Warren CR: Why does photosynthesis decrease with needle age in Pinus pinaster ? Trees 2006, 20: 157–164. 10.1007/s00468-005-0021-7

Warren CR, Adams MA: Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster . Tree Physiol 2002, 22: 11–19. 10.1093/treephys/22.1.11

Warren CR, Adams MA: Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 2006, 29: 192–201. 10.1111/j.1365-3040.2005.01412.x

Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA: Transfer conductance in second growth Douglas-fir ( Pseudotsuga menziesii (Mirb.)Franco) canopies. Plant Cell Environ 2003, 26: 1215–1227. 10.1046/j.1365-3040.2003.01044.x

Whitehead D, Walcroft AS, Griffin KL, Tissue DT, Turnbull MH, Engel VC, Brown KJ, Schuster WSF: Scaling carbon uptake from leaves to canopies: insights from two forests with contrasting properties.In Forests at the land-atmosphere interface: 231–254 Edited by: Mencuccini JGM, Moncrieff J, McNaughton KG. CAB International, U.K. CABI; 2004. [http://arrow.uws.edu.au:8080/vital/access/manager/Repository/uws:2660] http://arrow.uws.edu.au:8080/vital/access/manager/Repository/uws:2660

Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants - a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920