Meshless methods for the simulation of material forming
Tóm tắt
Meshless methods, that appeared in the early nineties, constitute nowadays an appealing method for the simulation of forming processes. In this review we revisit the basic ingredients of the most common of such methods, by analyzing their theoretical foundations, applicability and limitations, and give some examples of performance to show the wide variety of situations in which they can be employed.
Tài liệu tham khảo
Alfaro I, Bel D, Cueto E, Doblare M, Chinesta F (2006) Three-dimensional simulation of aluminium extrusion by the α-shape based natural element method. Comput Methods Appl Mech Eng 195(33–36):4269–4286. doi:10.1016/j.cma.2005.08.006. http://www.sciencedirect.com/science/article/pii/S0045782505003543
Alfaro I, Yvonnet J, Cueto E, Chinesta F, Doblare M (2006) Meshless methods with application to metal forming. Comput Methods Appl Mech Eng 195(48–49):6661–6675. doi:10.1016/j.cma.2004.10.017. http://www.sciencedirect.com/science/article/pii/S0045782505004809
Alfaro I, Yvonnet J, Chinesta F, Cueto E (2007) A study on the performance of natural neighbour-based galerkin methods. Int J Numer Methods Eng 71(12):1436–1465. doi:10.1002/nme.1993
Alfaro I, Fratini L, Cueto E, Chinesta F (2008) Numerical simulation of friction stir welding by natural element methods. Int J Mater Form 1(1):1079–1082. doi:10.1007/s12289-008-0206-x
Alfaro I, Gagliardi F, Olivera J, Cueto E, Filice L, Chinesta F (2009) Simulation of the extrusion of hollow profiles by natural element methods. Int J Mater Form 2(1):597–600. doi:10.1007/s12289-009-0614-6
Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202. doi:10.1002/nme.1534
Atluri S, Zhu T (2000) New concepts in meshless methods. Int J Numer Methods Eng 47:537–556
Atluri S, Kim HG, Cho JY (1999) A critical assesment of the truly meshless local Petrov-Galerkin and local boundary integral equation methods. Comput Mech 24:348–372
Babuška I, Melenk JM (1996) The partition of unity finite element method: basic theory and applications. Comp Meth Appl Mech Eng 4:289–314
Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758
Babuška I, Banerjee U, Osborn J (2002) Meshless and generalized finite element methods: a survey of some major results. Tech. Rep. TICAM 02-03. Texas Institute for Computational and Applied Mathematics, University of Texas atAustin
Belikov VV, Semenov AY (1998) Non-sibsonian interpolation on arbitrary system of points in euclidean space and adaptive generating isolines algorithm. In: Cross M, Soni BK, Thompson JF, Hauser J, Eiseman PR (eds) Numerical grid generation in computational field simulations. University of Greenwich, London, pp 277–286
Belikov VV, Ivanov VD, Kontorovich VK, Korytnik SA, Semenov AY (1997) The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput Math Math Phys 37(1):9–15
Belytschko T, Lu YY, Gu L (1993) Crack propagation by element free galerkin methods. Adv Comput Methods Mater Model 180:268
Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256
Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1998) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47
Belytschko T, Rabczuk T, Huerta A, Fernández-Méndez S (2004) Encyclopaedia of computational mechanics, chap Meshfree Methods. Wiley. doi:10.1002/0470091355ecm005
Birknes J, Pedersen G (2006) A particle finite element method applied to long wave run-up. Int J Numer Methods Fluids 52:237–261
Cante J, Riera MD, Oliver J, Prado J, Isturiz A, Gonzalez C (2011) Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granul Matter 13(1):79–92. doi:10.1007/s10035-010-0225-4
Castellazzi G, Krysl P (2009) Displacement-based finite elements with nodal integration for Reissner-Mindlin plates. Int J Numer Methods Eng 80(2):135–162. doi:10.1002/nme.2622
Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(34):441–468. doi:10.1016/S0045-78250080004-3
Chen JS, Roque CMOL, Pan C, Button ST (1998) Analysis of metal forming process based on meshless method. J Mater Process Technol 80–81(0):642–646. doi:10.1016/S0924-0136(98)00171-X
Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466
Chinesta F, Cueto E (2007) Advances in material forming. ESAFORM: 10 years on chap. New and advanced numerical strategies for material forming. Springer
Chinesta F, Lorong P, Ryckelynck D, Martinez MA, Cueto E, Doblare M, Coffignal M, Touratier M, Yvonnet J (2004) Thermomechanical cutting model discretisation. Eulerian or Lagrangian, Mesh or Meshless? Int J Form Process 7:83–97
Chinesta F, Ammar A, Mackley M, Cueto E, Regnier G, Chatel S (2009) Modeling nanocomposites: from rheology to forming processes simulation. Int J Mater Form 2(1):141–144. doi:10.1007/s12289-009-0453-5
Chinesta F, Cescotto S, Cueto E, Lorong P (2009) La méthode des éléments naturels dans la simulation des structures et des procédés. Hermes Lavoisier, Paris
Chinesta F, Cescotto S, Cueto E, Lorong P (2011) Natural element method for the simulation of structures and processes. Wiley, London
Cueto E, Doblare M, Gracia L (2000) Imposing essential boundary conditions in the natural element method by means of density-scaled α-shapes. Int J Numer Methods Eng 49–4:519–546
Cueto E, Calvo B, Doblare M (2002) Modeling three-dimensional piece-wise homogeneous domains using the α-shape based natural element method. Int J Numer Methods Eng 54:871–897
Cueto E, Cegonino J, Calvo B, Doblare M (2003) On the imposition of essential boundary conditions in natural neighbour Galerkin methods.Commun Numer Methods Eng 19(5):361–376
Cueto E, Sukumar N, Calvo B, Martinez MA, Cegonino J, Doblare M (2003) Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng 10(4):307–384
Cueto E, Ma A, Chinesta F, Mackley M (2008) Numerical simulation of spin coating processes involving functionalised carbon nanotube suspensions. Int J Mater Form 1(2):89–99. doi:10.1007/s12289-008-0377-5
Cueto E, Ma A, Chinesta F, Mackley M (2008) Numerical simulation of spin coating processes with carbon nanotubes suspensions. Int J Mater Form 1(1):711–714. doi:10.1007/s12289-008-0314-7
Cueto E, Monge R, Chinesta F, Poitou A, Alfaro I, Mackley M (2010) Rheological modeling and forming process simulation of cnt nanocomposites. Int J Mater Form 3(2):1327–1338. doi:10.1007/s12289-009-0659-6
Cueto E, Laso M, Chinesta F (2011) Meshless stochastic simulation of micro-macro kinetic theory models. Int J Multiscale Comput Eng 9(1):1–16
Cyron CJ, Arroyo M, Ortiz M (2009) Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79(13):1605–1632. doi:10.1002/nme.2597
De S, Bathe KJ (2001) The method of finite spheres with improved numerical integration. Comput Struct 79:2183–2196
De S, Bathe KJ (2001) Towards an efficient meshless computational technique: the method of finite spheres. Eng Comput 18:170–192
Delaunay B (1934) Sur la Sphre Vide. A la memoire de Georges Voronoi. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7:793–800
Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Math Model 23:219–230
Duarte CAM, Oden JT (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139:237–262
Edelsbrunner H, Mcke E (1994) Three dimensional alpha shapes. ACM Trans Graph 13:43–72
Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559
Elmer W, Chen J, Puso M, Taciroglu E (2012) A stable, meshfree, nodal integration method for nearly incompressible solids. Finite Elem Anal Des 51:81–85. doi:10.1016/j.finel.2011.11.001, http://www.sciencedirect.com/science/article/pii/S0168874X11002150
Farin G (2002) Curves and surfaces for CAGD. Morgan Kaufmann, San Francisco
Fernandez-Mendez S, Huerta A (2002) Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection-diffusion. In: Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer-Verlag, pp 117–129
Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275
Filice L, Alfaro I, Gagliardi F, Cueto E, Micari F, Chinesta F (2009) A preliminary comparison between finite element and meshless simulations of extrusion. J Mater Process Technol 209(6): 3039–3049. doi:10.1016/j.jmatprotec.2008.07.013. http://www.sciencedirect.com/science/article/pii/S0924013608005694
Gagliardi F, Alfaro I, Ambrogio G, Filice L, Cueto E (2013) NEM-FEM comparison on porthole die extrusion of AA-6082. J Mech Sci Technol 27(4):1089–1095. doi:10.1007/s12206-013-0229-1
Galavis A, Gonzalez D, Cueto E, Chinesta F, Doblare M (2007) A natural element updated lagrangian approach for modelling fluid structure interactions. Eur J Comput Mech/Revue Europeenne de Mecanique Numerique 16(3–4):323–336. doi:10.3166/remn.16.323-336
Galavis A, Gonzalez D, Cueto E (2012) A natural neighbour Lagrange-Galerkin method for the simulation of Newtonian and Oldroyd-B free surface flows. Int J Numer Methods Fluids 70(7):860–885. doi:10.1002/fld.2718
Galavis A, Gonzalez D, Alfaro I, Cueto E (2008) Improved boundary tracking in meshless simulations of free-surface flows. Comput Mech 42(3):467–479. doi:10.1007/s00466-008-0263-5
Garcia J, Gascon L, Cueto E, Ordeig I, Chinesta F (2009) Meshless methods with application to liquid composite molding simulation. Comput Methods Appl Mech Eng 198(33–36):2700–2709. doi:10.1016/j.cma.2009.03.010, http://www.sciencedirect.com/science/article/pii/S0045782509001352
Garcia-Aznar JM, Cueto E, Doblare M (2000) Simulation of bone internal remodeling by means of the α-shape based Natural Element Method. In: Proceedings of the ECCOMAS conference. Barcelona
Gavete L, Benito JJ, Falco S, Ruiz A (2000) Implementation of essential boundary conditions in a meshless method. Commun Numer Methods Eng 16(6):409–421. doi:10.1002/1099-0887(200006)16:6<409::AID-CNM349>3.0.CO;2-Z
Gingold R, Monahan JJ (1977) Smoothed particle hydrodynamics: theory and applications to non-spherical stars. Mon Not Roy Astron Soc 181:375–389
Gonzalez D, Cueto E, Doblare M (2004) Volumetric locking in natural neighbour Galerkin methods. Int J Numer Methods Eng 61:611–632
Gonzalez D, Cueto E, Martinez MA, Doblare M (2004) Numerical integration in natural neighbour Galerkin methods. Int J Numer Methods Eng 60(12):2077–2104
Gonzalez D, Bel D, Cueto E, Chinesta F, Doblare M (2007) Natural neighbour strategies for the simulation of laser surface coating processes. Int J Form Process 10:89–108
Gonzalez D, Cueto E, Chinesta F, Doblare M (2007) A natural element updated lagrangian strategy for free-surface fluid dynamics. J Comput Phys 223(1):127–150. doi:10.1016/j.jcp.2006.09.002, http://www.sciencedirect.com/science/article/pii/S0021999106004293
Gonzalez D, Cueto E, Doblare M (2008) Higher-order natural element methods: towards an isogeometric meshless method. Int J Numer Methods Eng 74(13):1928–1954. doi:10.1002/nme.2237
Gonzalez D, Cueto E, Doblare M (2009) A high order method using max-ent approximation schemes. Int J Mater Form 2(1):577–580. doi:10.1007/s12289-009-0627-1
Gonzlez D, Cueto E, Doblare M (2010) A higher order method based on local maximum entropy approximation. Int J Numer Methods Eng 83(6):741–764. doi:10.1002/nme.2855
Gosz J, Liu WK (1996) Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput Mech 19:120–135
Guenther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163(1-4):205–230
Oettinger HC (1996) Stochastic processes in polymeric fluids. Springer, New York
Hartmann S, Weyler R, Oliver J, Cante JC, Hernandez JA (2010) A 3D frictionless contact domain method for large deformation problems. Comput Model Eng Sci 55(3):211–269
Hiyoshi H, Sugihara K (1999) Two generalizations of an interpolant based on Voronoi diagrams. Int J Shape Model 5(2):219–231
Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636
Idelsohn SR, Onate E (2006) To mesh or not to mesh: that is the question. Comput Methods Appl Mech Eng 195(37–40):4681–4696
Idelsohn SR, Onate E, del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989
Illoul L, Lorong P (2011) On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing. Comput Struct 89(11–12):940–958. doi:10.1016/j.compstruc.2011.01.018
Illoul LA, Le Menach Y, Clenet S, Chinesta F (2008) A mixed finite element/meshless natural element method for simulating rotative electromagnetic machines. Eur Phys J Appl Phys 43:197–208. doi:10.1051/epjap:2008102, http://www.epjap.org/action/article_S128600420800102X
Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145. doi:10.1016/0045-7825(95)00954-X, http://www.sciencedirect.com/science/article/pii/004578259500954X
Krysl P, Zhu B (2008) Locking-free continuum displacement finite elements with nodal integration. Int J Numer Methods Eng 767:1020–1043. doi:10.1002/nme.2354
Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1–34
Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press
Liu H, Xing Z, Sun Z, Bao J (2011) Adaptive multiple scale meshless simulation on springback analysis in sheet metal forming. Eng Anal Boundary Elem 35(3):436–451. doi:10.1016/j.enganabound.2010.06.025, http://www.sciencedirect.com/science/article/pii/S0955799710002614, http://www.sciencedirect.com/science/article/pii/S0955799710002614
Liu WK, Chen Y (1995) Wavelet and multiple scale reproducing kernel methods. Int J Numer Methods Fluids 21:901–931
Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 38:1655–1679
Lof J, Blokhuis Y (2002) FEM simulations of the extrusion of complex thin-walled aluminium sections. J Mater Process Technol 122:344–354
Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024
Martinez MA, Cueto E, Alfaro I, Doblare M, Chinesta F (2004) Updated lagrangian free surface flow simulations with natural neighbour Galerkin methods. Int J Numer Methods Eng 60(13):2105–2129
Millan D, Rosolen A, Arroyo M (2013) Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. Int J Numer Methods Eng 93(7):685–713. doi:10.1002/nme.4403
Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318
Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813. doi:/10.1016/j.matcom.2008.01.003, http://www.sciencedirect.com/science/article/pii/S0378475408000062
Oliver J, Cante JC, Weyler R, Gonzalez C, Hernandez J (2007a). Particle finite element methods in solid mechanics problems. In: Onate E, Owen R (eds) Computational plasticity, computational methods in applied sciences, vol 7. European Community Computat Methods Appl Sci., Springer, Dordrecht, pp 87–103. 8th international conference on computational plasticity, CIMNE UPC, Barcelona, Sep. 05-08 2005. doi:f10.1007/978-1-4020-6577-4n6g
Oliver J, Cante JC, Weyler R, Hernandez J (2007). Possibilities of particle finite element methods in industrial forming processes. In: Cueto E, Chinesta F (eds) 10th ESAFORM Conference on Material Forming, Pts A and B. European Sci Assoc Mat Forming; European Community Computat Methods Appl Sci; Spanish Minist Educ & Sci; Reg Govt Aragon; Univ Zaragoza. AMER INST PHYSICS. 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA. AIP CONFERENCE PROCEEDINGS, vol 907, pp 1484–1489. 10th ESAFORM Conference on Material Forming, Zaragoza, SPAIN, APR 18-20, 2007
Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput Mech 18(3):225–235. doi:10.1007/BF00369940
Ortiz A, Puso M, Sukumar N (2011) Maximum-entropy meshfree method for incompressible media problems. Finite Elem Anal Des 47(6):572–585. doi:10.1016/j.finel.2010.12.009. The Twenty-Second Annual Robert J. Melosh Competition. http://www.sciencedirect.com/science/article/pii/S0168874X10002040
Puso MA, Chen JS, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74(3):416–446. doi:10.1002/nme.2181
Quak W, Boogaard A, Huetink J (2009) Meshless methods and forming processes. Int J Mater Form 2(1):585–588. doi:10.1007/s12289-009-0442-8
Quak W, Boogaard A, Gonzalez D, Cueto E (2011) A comparative study on the performance of meshless approximations and their integration. Comput Mech 48(2):121–137. doi:10.1007/s00466-011-0577-6
Sibson R (1980) A vector identity for the Dirichlet Tesselation. Math Proc Camb Philos Soc 87:151–155
Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, New York, pp 21–36
Sidibe K, Li G (2012) A meshfree simulation of the draw bending of sheet metal. Int J Sci Eng Res 3(10):1–5. doi:10.1007/s004660050463
Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181
Sukumar N, Moran B (1999) \(C^{1}\) Natural neighbour interpolant for partial differential equations. Numer Methods Partial Differential Equations 15(4):417–447
Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887
Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbor Galerkin methods. Int J Numer Methods Eng 50(1):1–27
Sukumar N, Dolbow J, Devan A, Yvonnet J, Chinesta F, Ryckelynck D, Lorong P, Alfaro I, Martinez MA, Cueto E, Doblare M (2005) Meshless methods and partition of unity finite elements. Int J Form Process 8:409–427
Tenenbaum JB, de Silva V, Langford JC (2000) A global framework for nonlinear dimensionality reduction. Science 290:2319–2323
Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rep 39:1082–1084
Yoon S, Wu CT, Wang HP, Chen JS (2000) Efficient meshfree formulation for metal forming simulations. J Eng Mater Technol 123(4):64–646
Yvonnet J, Ryckelynck D, Lorong P, Chinesta F (2004) A new extension of the Natural Element method for non-convex and discontnuous problems: the Constrained Natural Element method. Int J Numer Methods Eng 60(8):1452–1474
Yvonnet J, Chinesta F, Lorong P, Ryckelynck D (2005) The constrained natural element method (c-nem) for treating thermal models involving moving interfaces. Int J Thermal Sci 44(6):559–569. doi:10.1016/j.ijthermalsci.2004.12.007, http://www.sciencedirect.com/science/article/pii/S1290072905000347
Yvonnet J, Villon P, Chinesta F (2006) Natural element approximations involving bubbles for treating mechanical models in incompressible media. Int J Numer Methods Eng 66(7):1125–1152. doi:10.1002/nme.1586
Yvonnet J, Villon P, Chinesta F, Griebel M (2007) Bubble and hermite natural element approximations. In: Schweitzer M (ed) Meshfree methods for partial differential equations III. Lecture notes in computational science and engineering, vol 57. Springer, Berlin, pp 283–298
Zienkiewicz OC, Godbolet PN (1974) Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8:3–16
Zienkiewicz OC, Onate E, Heinrich JC (1978) Plastic flow in metal forming. (I) Coupled thermal (II) Thin sheet forming. In: Applications of numerical methods to forming processes. AMD-vol 28, pp 107–120
Zienkiewicz OC, Pain PC, Onate E (1978) Flow of solids during forming and extrusion: some aspects of numerical solutions. Int J Solids Struct 14:15–38