Meshless methods: A review and computer implementation aspects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atluri, 2002
Atluri, 2002, The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods, Comput. Model Eng. Sci., 3, 11
Atluri, 1998, A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117, 10.1007/s004660050346
Atluri, 2000, The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. Mech., 25, 169, 10.1007/s004660050467
Beissel, 1996, Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Eng., 139, 49, 10.1016/S0045-7825(96)01079-1
Belytschko, 1999, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 601, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Belytschko, 1996, Smoothing and accelerated computations in the element free Galerkin method, J. Comput. Appl. Math., 74, 111, 10.1016/0377-0427(96)00020-9
Belytschko, 1994, Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Eng., 2, 519, 10.1088/0965-0393/2/3A/007
Belytschko, 2000, A unified stability analysis of meshfree particle methods, Int. J. Numer. Methods Eng., 48, 1359, 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
Belytschko, 1998, On the completeness of meshfree particle methods, Int. J. Numer. Methods Eng., 43, 785, 10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
Belytschko, 1996, Smoothing and accelerated computations in the element-free Galerkin method, J. Comput. Appl. Math., 74, 111, 10.1016/0377-0427(96)00020-9
Belytschko, 1996, Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3, 10.1016/S0045-7825(96)01078-X
Belytschko, 1996, Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3, 10.1016/S0045-7825(96)01078-X
Belytschko, 1994, Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229, 10.1002/nme.1620370205
Belytschko, 1995, Crack propagation by element-free Galerkin methods, Eng. Fract. Mech., 51, 295, 10.1016/0013-7944(94)00153-9
Belytschko, 1995, Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct., 32, 2547, 10.1016/0020-7683(94)00282-2
Belytschko, 1994, Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229, 10.1002/nme.1620370205
Belytschko, 1995, A coupled finite element–element-free Galerkin method, Comput. Mech., 17, 186, 10.1007/BF00364080
Belytschko, 1996, Dynamic fracture using element-free Galerkin methods, Int. J. Numer. Methods Eng., 39, 923, 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
Bonet, 2000, Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulations, Int. J. Numer. Methods Eng., 47, 1189, 10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I
Bonet, 1999, Variational and momentum preservation aspects of smooth particle hydrodynamic formulations., Comput. Methods Appl. Mech. Eng., 180, 97, 10.1016/S0045-7825(99)00051-1
Bordas, 2007, A simulation-based design paradigm for complex cast components, Eng. Comput., 23, 25, 10.1007/s00366-006-0030-1
Bordas, 2006, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng. Fract. Mech., 73, 1176, 10.1016/j.engfracmech.2006.01.006
S. Bordas, V.P. Nguyen, C. Dunant, H. Nguyen-Dang, A. Guidoum, An extended finite element library, Int. J. Numer. Methods Eng. 71 (2008) 703–732.
Carpinteri, 1989, Post-peak and post-bifurcation analysis of cohesive crack propagation, Eng. Fract. Mech., 32, 265, 10.1016/0013-7944(89)90299-3
Carpinteri, 2002, A scale-invariant cohesive crack model for quasi-brittle materials, Eng. Fract. Mech., 69, 207, 10.1016/S0013-7944(01)00085-6
Carpinteri, 2002, The partition of unity quadrature in meshless methods, Int. J. Numer. Methods Eng., 54, 987, 10.1002/nme.455
Carpinteri, 2003, The partition of unity quadrature in element-free crack modelling, Comput. Struct., 81, 1783, 10.1016/S0045-7949(03)00202-5
Chen, 1998, A Lagrangian reproducing kernel particle method for metal forming analysis, Comput. Mech., 22, 289, 10.1007/s004660050361
Chen, 1996, Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Eng., 139, 195, 10.1016/S0045-7825(96)01083-3
Chen, 2001, A stabilized conforming nodal integration for Galerkin meshfree-methods, Int. J. Numer. Methods Eng., 50, 435, 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
Chung, 2000, Adaptive nodal generation with the element-free Galerkin method, Struct. Eng. Mech., 10, 635, 10.12989/sem.2000.10.6.635
Cueto-Felgueroso, 2004, On the Galerkin formulation of smoothed particle hydrodynamics, Int. J. Numer. Methods Eng., 60, 1475, 10.1002/nme.1011
Dilts, 2000, Moving least square particle hydrodynamics. I. Consistency and stability, Int. J. Numer. Methods Eng., 44, 1115, 10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
Dilts, 2000, Moving least square particle hydrodynamics. II. Conservation and boundaries, Int. J. Numer. Methods Eng., 1503, 10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
Dolbow, 1998, An introduction to programming the meshless element-free Galerkin method, Arch. Comput. Mech., 5, 207, 10.1007/BF02897874
Dolbow, 1999, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23, 219, 10.1007/s004660050403
Duarte, 1996, An hp adaptive method using clouds, Comput. Methods Appl. Mech. Eng., 139, 237, 10.1016/S0045-7825(96)01085-7
Duarte, 1996, Hp clouds–an hp meshless method, Numerical Methods for Partial Differential Equations, 12, 673, 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
Duflot, 2006, A meshless method with enriched weight functions for three-dimensional crack propagation, Int. J. Numer. Methods Eng., 65, 1970, 10.1002/nme.1530
Duflot, 2002, Dual analysis by a meshless method, Commun. Numer. Methods Eng., 18, 621, 10.1002/cnm.521
Duflot, 2002, A truly meshless method based on a moving least squares quadrature, Commun. Numer. Methods Eng., 18, 441, 10.1002/cnm.503
Duflot, 2004, A meshless method with enriched weight functions for fatigue crack growth, Int. J. Numer. Methods Eng., 59, 1945, 10.1002/nme.948
Dunant, 2007, Architecture trade-offs of including a mesher in an object-oriented extended finite element code, Eur. J. Comput. Mech., 237, 10.3166/remn.16.237-258
Dyka, 1995, An approach for tensile instability in smoothed particle hydrodynamics, Comput. Struct., 57, 573, 10.1016/0045-7949(95)00059-P
S. Fernández-Méndez, P. Díez, A. Huerta, Convergence of finite elements enriched with meshless methods, Numer. Math. 96 (2003) 43–59.
S. Fernández-Méndez, A. Huerta, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1257–1275.
S. Fernández-Méndez, A. Huerta, Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection–diffusion, in: M. Griebel, M.A. Schweitzer (Eds.), Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 26, Springer-Verlag, Berlin, 2002, pp. 117–129 (Papers from the International Workshop, Universität Bonn, Germany, September 11–14, 2001).
Fleming, 1997, Enriched element-free Galerkin methods for crack tip fields, Int. J. Numer. Methods Eng., 40, 1483, 10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
Gavete, 2002, A procedure for approximation of the error in the EFG method, Int. J. Numer. Methods Eng., 53, 677, 10.1002/nme.307
Gavete, 2001, An error indicator for the element-free Galerkin method, Eur. J. Mech. A/Solids, 20, 327, 10.1016/S0997-7538(00)01132-3
Gavete, 2003, A posteriori error approximation in EFG method, Int. J. Numer. Methods Eng., 58, 2239, 10.1002/nme.850
Gingold, 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices R. Astron. Soc., 181, 375, 10.1093/mnras/181.3.375
S. Hao, W.K. Liu, Moving particle finite element method with superconvergence: nodal integration formulation and applications, Comput. Methods Appl. Mech. Eng. 195 (2006) 6059–6072.
Huerta, 2000, Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng., 48, 1615, 10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S
Huerta, 2004
A. Huerta, S. Fernández-Méndez, W.K. Liu, A comparison of two formulations to blend finite elements and mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1105–1117.
Hëussler-Combe, 1998, An adaptive approach with the element-free Galerkin method, Comput. Methods Appl. Mech. Eng., 162, 203, 10.1016/S0045-7825(97)00344-7
Idelsohn, 2004, The particle finite element method: a powerful tool to solve incompressible flows with free surfaces and breaking waves, Int. J. Numer. Methods Eng., 61, 964, 10.1002/nme.1096
Johnson, 1996, Normalized smoothing functions for sph impact computations, Int. J. Numer. Methods Eng., 39, 2725, 10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
Johnson, 2000, A generalized particle algorithm for high velocity impact computations, Comput. Mech., 25, 245, 10.1007/s004660050473
Krongauz, 1998, EFG approximation with discontinuous derivatives, Int. J. Numer. Methods Eng., 41, 1215, 10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
Krongauz, 1998, EFG approximation with discontinuous derivatives, Int. J. Numer. Methods Eng., 41, 1215, 10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
Lancaster, 1981, Surfaces generated by moving least squares methods, Math. Comput., 37, 141, 10.1090/S0025-5718-1981-0616367-1
Laouar, 1998, Adaptive analysis for the diffuse element method
Lee, 2004, On error estimation and adaptive refinement for element free Galerkin method. Part I. Stress recovery and a posteriori error estimation, Comput. Struct., 82, 413, 10.1016/j.compstruc.2003.10.018
Lee, 2004, On error estimation and adaptive refinement for element free Galerkin method. Part II. Adaptive refinement, Comput. Struct., 82, 429, 10.1016/j.compstruc.2003.10.017
Lee, 2003, Adaptive crack propagation analysis with the element-free Galerkin method, Int. J. Numer. Methods Eng., 56, 331, 10.1002/nme.564
Li, 2005, A locking-free meshless local Petrov–Galerkin formulation for thick and thin plates, J. Comput. Phys., 208, 116, 10.1016/j.jcp.2005.02.008
Libersky, 1993, High strain Lagrangian hydrodynamics, J. Comput. Phys., 109, 67, 10.1006/jcph.1993.1199
Liszka, 1996, Hp-meshless cloud method, Comput. Methods Appl. Mech. Eng., 139, 263, 10.1016/S0045-7825(96)01086-9
Liu, 1995, Reproducing kernel particle methods, Int. J. Numer. Methods Eng., 20, 1081, 10.1002/fld.1650200824
Liu, 2004, Reproducing kernel element method. Part I. Theoretical formulation, Comput. Methods Appl. Mech. Eng., 193, 933, 10.1016/j.cma.2003.12.001
Loehner, 2002, A finite point method for compressible flow, Int. J. Numer. Methods Eng., 53, 1765, 10.1002/nme.334
Lu, 2002, Adaptive Galerkin particle method, Lect. Notes Comput. Sci. Eng., 26, 251, 10.1007/978-3-642-56103-0_17
Lucy, 1977, A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013, 10.1086/112164
Melenk, 1996, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289, 10.1016/S0045-7825(96)01087-0
Moës, 1999, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Oñate, 1998, A mesh-free finite point method for advective-diffusive transport and fluid flow problems, Comput. Mech., 21, 283
Oñate, 1996, A finite point method in computational mechanics: applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39, 3839, 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
Organ, 1996, Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput. Mech., 18, 225, 10.1007/BF00369940
M.A. Puso, J.S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal integration methods, Int. J. Numer. Methods Eng. 74 (2008) 416–446.
Rabczuk, 2003, An adaptive continuum/discrete crack approach for meshfree particle methods, Latin Am. J. Solids Struct., 1, 141
Rabczuk, 2005, Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. Numer. Methods Eng., 63, 1559, 10.1002/nme.1326
Randles, 1997, Recent improvements in sph modeling of hypervelocity impact, Int. J. Impact Eng., 20, 525, 10.1016/S0734-743X(97)87441-6
Randles, 2000, Normalized sph with stress points, Int. J. Numer. Methods Eng., 48, 1445, 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
D. Shepard, A two-dimensional function for irregularly spaced points, in: Proceedings of the 23rd ACM National Conference, 1968, pp. 517–524.
Strouboulis, 2000, The generalized finite element method: an example of its implementation and illustration of its performance, Int. J. Numer. Methods Eng., 47, 1401, 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
Sukumar, 2000, Modelling holes and inclusions by level sets in the extended finite element method, Comput. Methods Appl. Mech. Eng., 190, 6183, 10.1016/S0045-7825(01)00215-8
Sukumar, 2003, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Eng. Fract. Mech., 70, 29, 10.1016/S0013-7944(02)00032-2
Sukumar, 2000, Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., 48, 1549, 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
Sumi, 1985, Computational crack path prediction, Theor. Appl. Fract. Mech., 4, 149, 10.1016/0167-8442(85)90019-9
Sumi, 1985, On crack path stability in a finite body, Eng. Fract. Mech., 22, 759, 10.1016/0013-7944(85)90106-7
Swegle, 1995, Smooth particle hydrodynamics stability analysis, J. Comput. Phys., 116, 123, 10.1006/jcph.1995.1010
Ventura, 2002, An augmented Lagrangian approach to essential boundary conditions in meshless methods, Int. J. Numer. Methods Eng., 53, 825, 10.1002/nme.314
Ventura, 2002, A vector level set method and new discontinuity approximations for crack growth by EFG, Int. J. Numer. Methods Eng., 54, 923, 10.1002/nme.471
Vila, 1999, On particle weighted methods and smooth particle hydrodynamics, Math. Models Methods Appl. Sci., 9, 161, 10.1142/S0218202599000117
Xiao, 2005, Material stability analysis of particle methods, Adv. Comput. Math., 23, 171, 10.1007/s10444-004-1817-5
You, 2003, Filters, reproducing kernel and adaptive meshfree method, Comput. Mech., 31, 316, 10.1007/s00466-003-0434-3
Z.Q. Zhang, J.X. Zhou, X.M. Wang, Y.F. Zhang, L. Zhang, Investigations on reproducing kernel particle method enriched by partition of unity and visibility criterion, Comput. Mech. (2004), http://www.springerlink.com/link.asp?id=pxqfcbkr3ggfaf2b.
Zienkiewicz, 1987, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24, 337, 10.1002/nme.1620240206
T. Rabczuk, T. Belytschko, S.P. Xiao, Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Eng. 193 (12–14) (2004) 1035–1063.
Huerta, 2004, Meshfree Methods
Rabczuk, 2006, Coupling of meshfree methods with finite elements: Basic concepts and test results, Commun. Numer. Methods Eng., 22, 1031, 10.1002/cnm.871
H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang. Smooth finite elements: convergence, accuracy and properties, IJNME 74 (2008) 175–208.
S. Bordas, T. Rabczuk, H. Nguyen-Xuan, S. Natarajan, Review and Recent Developments on the Smoothed Finite Element Method (SFEM) and First Results in the Smoothed eXtended Finite Element Method (SmXFEM), Comput. Struct. (2007), http://www.civil.gla.ac.uk/∼bordas/pdf/.
G.R. Liu, K.Y. Dai, T.T. Nguyen. A smoothed finite element for mechanics problems, CM 71 (2008) 175–208.
Liu, 2007, Theoretical aspects of the smoothed finite element method (SFEM), IJNME, 71, 902, 10.1002/nme.1968
Nguyen-Xuan, 2008, A smoothed finite element method for plate analysis, CMAME, 197, 1184
Rabczuk, 2004, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., 61, 2316, 10.1002/nme.1151
Rabczuk, 2006, A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. Model. Eng. Sci., 16, 115
Rabczuk, 2007, A meshfree method based on the local partition of unity for cohesive cracks, Comput. Mech., 39, 743, 10.1007/s00466-006-0067-4
T. Rabczuk, T. Belytschko. A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng. 196 (29–30) (2007), 2777–2799.
Zi, 2007, Extended Meshfree Methods without Branch Enrichment for Cohesive Cracks, Comput. Mech., 40, 367, 10.1007/s00466-006-0115-0
Rabczuk, 2007, A simplified meshfree methods for shear bands with cohesive surfaces, Int. J. Numer. Methods Eng., 69, 993, 10.1002/nme.1797
S. Bordas, M. Duflot, Derivative recovery and a posteriori error estimate for extended finite elements, Comput. Methods Appl. Mech. Eng. 196 (35–36) (2007) 3381–3399.
S. Bordas, M. Duflot, P. Le, A simple a posteriori error estimator for the extended finite element method, CNME 24 (2008) 961–971.
M. Duflot, S. Bordas, An extended global recovery procedure for a posteriori error estimation in extended finite element methods, IJNME, in press, http://www.civil.gla.ac.uk/∼bordas/pdf/duflotbordas.pdf.
E. Oñate, Possibilities of finite calculus in computational mechanics, Int. J. Numer. Methods Eng. 60 (1) (2004) 255–281.
N. Sukumar, Construction of Polygonal Interpolants: A Maximum Entropy Approach, IJNME 61 (12) (2004) 2159–2181.
M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Int. J. Numer. Methods Eng. 65 (13) (2006) 2167–2202.
H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang, Selective integration in the smoothed finite element method, Commun. Numer. Methods Eng. (2008), in press.
N. Nguyen, H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang, A locking free smoothed finite element method for shells with high tolerance to mesh distortion, CMAME (2007), in press (http://www.civil.gla.ac.uk/∼bordas/pdf/nxhbordas4.pdf).
N. Sukumar, E.A. Malsch, Recent Advances in the Construction of Polygonal Finite Element Interpolants, Arch. Computat. Methods Eng. 13 (1) (2006) 129–163.