Meromorphic functions sharing values partially with their derivatives and shifts

The Journal of Analysis - Tập 31 - Trang 329-342 - 2022
Imrul Kaish1, Rana Mondal1
1Department of Mathematics and Statistics, Aliah University, Kolkata, India

Tóm tắt

In this article, we study some uniqueness results of non-constant meromorphic functions whose k-th derivatives share values partially with their shifts supporting the hyper-order strictly less than 1. Moreover, our results improve and extend some related results. In addition, some examples are demonstrated for the sharpness of the results.

Tài liệu tham khảo

Chiang, Y.M., and S.J. Feng. 2008. On the Nevanlinna characteristic of \(f(z+\eta )\) and difference equations in the complex plane. Ramanujan Journal 16 (1): 105–129. https://doi.org/10.1007/s11139-007-9101-1. Chen, S.J., and W.C. Lin. 2017. Periodicity and uniqueness of meromorphic functions concerning sharing values. Houston Journal of Mathematics 43 (3): 763–781. Chen, S.J., and A.Z. Xu. 2012. Periodicity and unicity of meromorphic functions with three shared values. Journal of Mathematical Analysis and Applications 385 (1): 485–490. https://doi.org/10.1016/j.jmaa.2011.06.072. Charak, K.S., R.J. Korhonen, and G. Kumar. 2016. A note on partial sharing of values of meromorphic functions with their shifts. Journal of Mathematical Analysis and Applications 435 (2): 1241–1248. https://doi.org/10.1016/j.jmaa.2015.10.069. Hayman, W.K. 1964. Meromorphic functions. Oxford mathematical monographs. Oxford: Clarendon Press. Halburd, R.G., and R.J. Korhonen. 2006. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. Journal of Mathematical Analysis and Applications 314 (2): 477–487. https://doi.org/10.1016/j.jmaa.2005.04.010. Halburd, R.G., and R.J. Korhonen. 2006. Nevanlinna theory for the difference operator. Annales Academiae Scientiarum Fennicae 31 (2): 463–478. Halburd, R.G., R.J. Korhonen, and K. Tohge. 2014. Holomorphic curves with shift-invariant hyperplane preimages. Transactions of American Mathematical Society 366 (8): 4267–4298. https://doi.org/10.1090/S0002-9947-2014-05949-7. Heittokangas, J., R. Korhonen, I. Laine, and J. Rieppo. 2011. Uniqueness of meromorphic functions sharing values with their shifts. Complex Variables and Elliptic Equations 56 (1–4): 81–92. https://doi.org/10.1080/17476930903394770. Heittokangas, J., R. Korhonen, I. Laine, J. Rieppo, and J. Zhang. 2009. Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. Journal of Mathematical Analysis and Applications 355 (1): 352–363. https://doi.org/10.1016/j.jmaa.2009.01.053. Laine, I. 1993. Nevanlinna theory and complex differential equations De Gruyter Studies in Mathematics, vol. 15. Berlin: Walter de Gruyter and Co. https://doi.org/10.1515/9783110863147. Laine, I., and C.C. Yang. 2007. Clunie theorems for difference and \(q\)-difference polynomials. Journal of the London Mathematical Society 76 (3): 556–566. https://doi.org/10.1112/jlms/jdm073. Laine, I., and C.C. Yang. 2007. Value distribution of difference polynomials. Proceedings of the Japan Academy Series A Mathematical Science 83 (8): 148–151. https://doi.org/10.3792/pjaa.83.148. Li, X.M., and H.X. Yi. 2016. Meromorphic functions sharing four values with their difference operators or shifts. Bulletin of the Korean Mathematical Society 53 (4): 1213–1235. https://doi.org/10.4134/BKMS.b150609. Lin, W., S. Chen, and X. Gao. 2019. Uniqueness and periodicity for Meromorphic functions with partial sharing values. Mathematica Slovaca 69 (1): 99–110. https://doi.org/10.1515/ms-2017-0206. Yamanoi, K. 2004. The second main theorem for small functions and related problems. Acta Mathematica 192 (2): 225–294. https://doi.org/10.1007/BF02392741. Yang, C.C., and H.X. Yi. 2003. Uniqueness theory of meromorphic functions. In Mathematics and its applications, vol 557. Dordrecht/Boston/London: Kluwer Academic Publishers Group. https://doi.org/10.1007/978-94-017-3626-8.