Merging network patterns: a general framework to summarize biomedical network data

Yang Xiang1, David Fuhry2, Kamer Kaya1, Ruoming Jin3, Ümit V. Çatalyürek1, Kun Huang1
1Department of Biomedical Informatics, The Ohio State University, Columbus, USA
2Department of Computer Science and Engineering, The Ohio State University, Columbus, USA
3Department of Computer Science, Kent State University, Kent, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abello J, Resende MGC, Sudarsky S (2002) Massive quasi-clique detection. In: LATIN, pp 598–612

Almansoori W, Gao S, Jarada TN, Elsheikh AM, Murshed AN, Jida J, Alhajj R, Rokne J (2012) Link prediction and classification in social networks and its application in healthcare and systems biology. Netw Model Anal Health Inform Bioinforma. doi: 10.1007/s13721-012-0005-7

Bastian M, Heymann S, Gephi MJ (2009) An open source software for exploring and manipulating networks. In: ICWSM

Berkhin P (2006) A survey of clustering data mining techniques. Grouping Multidimensional Data

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16(9):575–577

Burdick D, Calimlim M, Flannick J, Gehrke J, Yiu T (2005) Mafia: a maximal frequent itemset algorithm. IEEE Trans Knowl Data Eng 17(11):1490–1504

Carroll JS, Meyer CA, Song J, Li W et al (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297

Defays D (1977) An efficient algorithm for a complete link method. Comput J 20(4):364–366

Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165

Du N, Wang B, Wu B, Wang Y (2008) Overlapping community detection in bipartite networks. In: Web intelligence, pp 176–179

Duan R, Pettie S, Su H-H (2011) Scaling algorithms for approximate and exact maximum weight matching

Edmonds J (1965) Paths, trees, and flowers. Can J Math 17(3):449–467

Geerts F, Goethals B, Mielikäinen T (2004) Tiling databases. In: Discovery science, pp 278–289

Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Elsevier

Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129

Jin R, Hong H, Wang H, Ruan N, Xiang Y (2010) Computing label-constraint reachability in graph databases. In: SIGMOD conference, pp 123–134

Jin R, Ruan N, Xiang Y, Lee VE (2012) A highway-centric labeling approach for answering distance queries on large sparse graphs. In: SIGMOD conference

Jin R, Xiang Y, Hong H, Huang K (2010) Block interaction: a generative summarization scheme for frequent patterns. In: UP ’10 proceedings of the ACM SIGKDD workshop on useful patterns, pp 55–64

Johnson DS, Yannakakis M, Papadimitriou CH (1988) On generating all maximal independent sets. Inf Process Lett 27(3):119–123

Karp R (1972) Reducibility among combinatorial problems. In: Miller R, Thatcher J (eds) Complexity of computer computations. Plenum Press, New York, pp 85–103

Kutalik Z, Beckmann JS, Bergmann S (2008) A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol 26(5):531–539

Li J, Liu Y, Gao H (2011) Efficient algorithms for summarizing graph patterns. IEEE Trans Knowl Data Eng 23(9):1388–1405

Li J, Liu G, Li H, Wong L (2007) Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: a one-to-one correspondence and mining algorithms. IEEE Trans Knowl Data Eng 19(12):1625–1637

Li J, Sim K, Liu G, Wong L (2008) Maximal quasi-bicliques with balanced noise tolerance: concepts and co-clustering applications. In: SDM, pp 72–83

Lucchese C, Orlando S, Perego R (2010) A generative pattern model for mining binary datasets. In: SAC, pp 1109–1110

Makino K, Uno T (2004) New algorithms for enumerating all maximal cliques. In: SWAT, pp 260–272

Micali S, Vazirani VV (1980) An $$\mathcal{O}(\sqrt{|V|}{|E|})$$ algorithm for finding maximum matching in general graphs. In: FOCS, pp 17–27

Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2008) The discrete basis problem. IEEE Trans Knowl Data Eng 20(10):1348–1362

Mirkin B (1996) Mathematical classification and clustering. Kluwer Academic Publishers, Dordrecht

Moon JW, Moser L (1965) On cliques in graphs. Israel J Math 3(1):23–28

Mucha M, Sankowski P (2004) Maximum matchings via gaussian elimination. In: FOCS, pp 248–255

Mushlin RA, Gallagher S, Kershenbaum A, Rebbeck TR (2009) Clique-finding for heterogeneity and multidimensionality in biomarker epidemiology research: the chamber algorithm. PloS one 4(3):4862

Ou Y, Zhang C (2007) A new multimembership clustering method. J Ind Manag Optim 3(4):619

Ravetti MG, Moscato P (2008) Identification of a 5-protein biomarker molecular signature for predicting alzheimer’s disease. PLoS One 3(9):3111

Reyal F, van Vliet MH, Armstrong NJ et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and rna splicing modules in breast cancer. Breast Cancer Res 10(6):R93

Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83(5):610–615

Robinson PN, Mundlos S (2010) The human phenotype ontology. Clin Genet 77(6):525–534

Seidman SB (1983) Network structure and minimum degree* 1. Social Netw 5(3):269–287

Seidman SB, Foster BL (1978) A graph-theoretic generalization of the clique concept. J Math Sociol 6(1):139–154

Slink RS (1973) An optimally efficient algorithm for the single-link cluster method. Comput J 16(1):30–34

Stoer M, Wagner F (1997) A simple min-cut algorithm. J ACM 44(4):585–591

Tsukiyama S, Ide M, Ariyoshi H, Shirakawa I (1977) A new algorithm for generating all the maximal independent sets. SIAM J Comput 6:505

Uppalapati P, Xiang Y, Huang K (2010) Predicting prognostic markers for glioma using gene co-expression network analysis. In: Proceedings of the first ACM international conference on bioinformatics and computational biology, pp 546–551

van de Vijver MJ, He YD, van ’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med 347(25):1999–2009

van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

Wang Y, Klijn PGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65

Xiang Y, Zhang CQ, Huang K (2012) Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on tcga data. BMC Bioinform 13(Suppl 2):S12

Xiang Y, Jin R, Fuhry D, Dragan FF (2011) Summarizing transactional databases with overlapped hyperrectangles. Data Min Knowl Discov 23(2):215–251

Xiang Y, Payne P, Huang K (2012) Transactional database transformation and its application in prioritizing human disease genes. IEEE/ACM Trans Comput Biol Bioinform 9(1):294–304

Zhang J, Xiang Y, Ding L et al (2010) Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia. BMC Bioinform 11(Suppl 9):S5