Merging machine learning and bioelectronics for closed-loop control of biological systems and homeostasis
Tài liệu tham khảo
Billman, 2020, Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology, Front. Physiol., 11, 200, 10.3389/fphys.2020.00200
Cannon, 1929, Organization for physiological homeostasis, Physiol. Rev., 9, 399, 10.1152/physrev.1929.9.3.399
Röder, P.V., Wu, B., Liu, Y., and Han, W. Pancreatic Regulation of Glucose Homeostasis.
Pomatto, 2017, The role of declining adaptive homeostasis in ageing, J. Physiol., 595, 7275, 10.1113/JP275072
Bhave, 2021, Distributed sensor and actuator networks for closed-loop bioelectronic medicine, Mater. Today, 46, 125, 10.1016/j.mattod.2020.12.020
Chen, 2022, A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves, Nat. Biomed. Eng., 6, 706, 10.1038/s41551-022-00873-7
Goh, 2023, Machine learning for bioelectronics on wearable and implantable devices: challenges and potential, Tissue Eng. Part A, 29, 20, 10.1089/ten.tea.2022.0119
Raczkowska, 2022, Closed-Loop Visceral Bioelectronics Therapies, 1
Shin, 2022, NeuralTree: A 256-Channel 0.227-μJ/Class Versatile Neural Activity Classification and Closed-Loop Neuromodulation SoC, IEEE J. Solid-State Circuits, 57, 3243, 10.1109/JSSC.2022.3204508
Wang, 2022, Wearable bioelectronics for chronic wound management, Adv. Funct. Mater., 32, 2111022, 10.1002/adfm.202111022
Pansodtee, 2021, The multi-channel potentiostat: Development and evaluation of a scalable mini-potentiostat array for investigating electrochemical reaction mechanisms, PLoS One, 16, e0257167, 10.1371/journal.pone.0257167
Sefah, 2009, Nucleic acid aptamers for biosensors and bio-analytical applications, Analyst, 134, 1765, 10.1039/b905609m
Liu, 2017, Connecting biology to electronics: Molecular communication via redox modality, Adv. Healthc. Mater., 6, 1700789, 10.1002/adhm.201700789
Wong, 2010, Dynamic actuation using nano-bio interfaces, Mater. Today, 13, 14, 10.1016/S1369-7021(10)70105-X
Selberg, 2020, Expanding biological control to bioelectronics with machine learning, Apl. Mater., 8, 120904, 10.1063/5.0027226
Strakosas, 2017, Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels, Adv. Sci., 4, 1600527, 10.1002/advs.201600527
Obaid, 2020, Massively parallel microwire arrays integrated with CMOS chips for neural recording, Sci. Adv., 6, eaay2789, 10.1126/sciadv.aay2789
Ronchi, 2019, Single-Cell Electrical Stimulation Using CMOS-Based High-Density Microelectrode Arrays, Front. Neurosci., 13, 208, 10.3389/fnins.2019.00208
Song, 2019, Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration, Proc. Natl. Acad. Sci. USA, 116, 15398, 10.1073/pnas.1907697116
Chen, 2020, Flexible inorganic bioelectronics, npj Flex. Electron., 4, 2, 10.1038/s41528-020-0065-1
Spyropoulos, 2019, Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics, Sci. Adv., 5, eaau7378, 10.1126/sciadv.aau7378
Inal, 2018, Conjugated Polymers in Bioelectronics, Acc. Chem. Res., 51, 1368, 10.1021/acs.accounts.7b00624
Zhang, 2016, Nano-Bioelectronics, Chem. Rev., 116, 215, 10.1021/acs.chemrev.5b00608
Fang, 2017, Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology, Nat. Biomed. Eng., 1, 0038, 10.1038/s41551-017-0038
Stavrinidou, 2015, Electronic plants, Sci. Adv., 1, e1501136, 10.1126/sciadv.1501136
Hemmatian, 2019, Electronic control of H+ current in a bioprotonic device with carbon nanotube porins, PLoS One, 14, e0212197, 10.1371/journal.pone.0212197
Pappa, 2020, Optical and Electronic Ion Channel Monitoring from Native Human Membranes, ACS Nano, 14, 12538, 10.1021/acsnano.0c01330
Jakešová, 2019, Optoelectronic control of single cells using organic photocapacitors, Sci. Adv., 5, eaav5265, 10.1126/sciadv.aav5265
Habib, 2019, Electro-plasmonic nanoantenna: A nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals, Sci. Adv., 5, eaav9786, 10.1126/sciadv.aav9786
Singer, 2020, Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies, Neuron, 107, 631, 10.1016/j.neuron.2020.05.019
Caruso, 2017, In Vivo Magnetic Recording of Neuronal Activity, Neuron, 95, 1283, 10.1016/j.neuron.2017.08.012
Strakosas, 2019, A non-enzymatic glucose sensor enabled by bioelectronic pH control, Sci. Rep., 9, 10844, 10.1038/s41598-019-46302-9
Bhokisham, 2020, A redox-based electrogenetic CRISPR system to connect with and control biological information networks, Nat. Commun., 11, 2427, 10.1038/s41467-020-16249-x
Yu, 2020, Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis, Adv. Mater., 32, e1902083, 10.1002/adma.201902083
Jia, 2022, A multi-ion electrophoretic pump for simultaneous on-chip delivery of H+, Na+, and Cl−, Apl. Mater., 10, 041112, 10.1063/5.0084570
Seitanidou, 2019, Modulating Inflammation in Monocytes Using Capillary Fiber Organic Electronic Ion Pumps, Adv. Healthc. Mater., 8, 1900813, 10.1002/adhm.201900813
Seitanidou, 2019, Overcoming transport limitations in miniaturized electrophoretic delivery devices, Lab Chip, 19, 1427, 10.1039/C9LC00038K
Poxson, 2019, Capillary-Fiber Based Electrophoretic Delivery Device, ACS Appl. Mater. Interfaces, 11, 14200, 10.1021/acsami.8b22680
Williamson, 2015, Controlling Epileptiform Activity with Organic Electronic Ion Pumps, Adv. Mater., 27, 3138, 10.1002/adma.201500482
Long, 2021, Wearable and implantable electroceuticals for therapeutic electrostimulations, Adv. Sci., 8, 2004023, 10.1002/advs.202004023
Sunwoo, 2021, Wearable and implantable soft bioelectronics: device designs and material strategies, Annu. Rev. Chem. Biomol. Eng., 12, 359, 10.1146/annurev-chembioeng-101420-024336
Strakosas, 2019, A Bioelectronic Platform Modulates pH in Biologically Relevant Conditions, Adv. Sci., 6, 1800935, 10.1002/advs.201800935
Selberg, 2018, The potential for convergence between synthetic biology and bioelectronics, Cell Syst., 7, 231, 10.1016/j.cels.2018.08.007
Selberg, 2020, Machine Learning-Driven Bioelectronics for Closed-Loop Control of Cells, Adv. Intell. Syst., 2, 2070122, 10.1002/aisy.202070122
El-Samad, 2021, Biological feedback control—Respect the loops, Cell Syst., 12, 477, 10.1016/j.cels.2021.05.004
Iglesias, 2010
Del Vecchio, 2016, Control theory meets synthetic biology, J. R. Soc. Interface, 13, 20160380, 10.1098/rsif.2016.0380
Purnick, 2009, The second wave of synthetic biology: from modules to systems, Nat Rev Mol Cell Bio, 10, 410, 10.1038/nrm2698
Benner, 2005, Synthetic biology, Nat. Rev. Genet., 6, 533, 10.1038/nrg1637
Boo, 2019, Host-aware synthetic biology, Curr. Opin. Syst. Biol., 14, 66, 10.1016/j.coisb.2019.03.001
Afroz, 2013, Understanding and exploiting feedback in synthetic biology, Chem. Eng. Sci., 103, 79, 10.1016/j.ces.2013.02.017
Menolascina, 2014, In-vivo real-time control of protein expression from endogenous and synthetic gene networks, PLoS Comput. Biol., 10, e1003625, 10.1371/journal.pcbi.1003625
Aoki, 2019, A universal biomolecular integral feedback controller for robust perfect adaptation, Nature, 570, 533, 10.1038/s41586-019-1321-1
Del Vecchio, 2015
Lugagne, 2017, Balancing a genetic toggle switch by real-time feedback control and periodic forcing, Nat. Commun., 8, 1671, 10.1038/s41467-017-01498-0
Comerci, 2022, Localized electrical stimulation triggers cell-type-specific proliferation in biofilms, Cell Syst., 13, 488, 10.1016/j.cels.2022.04.001
Shakiba, 2021, Context-aware synthetic biology by controller design: Engineering the mammalian cell, Cell Syst., 12, 561, 10.1016/j.cels.2021.05.011
Ghorbani, 2014, 4839
Krawczyk, 2020, Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice, Science, 368, 993, 10.1126/science.aau7187
Din, 2020, Interfacing gene circuits with microelectronics through engineered population dynamics, Sci. Adv., 6, eaaz8344, 10.1126/sciadv.aaz8344
Boutet, 2021, Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning, Nat. Commun., 12, 3043, 10.1038/s41467-021-23311-9
Jung, 2023
Patel, 2019, Precision electronic medicine in the brain, Nat. Biotechnol., 37, 1007, 10.1038/s41587-019-0234-8
Rouhani, 2023, Suppression of seizure in childhood absence epilepsy using robust control of deep brain stimulation: a simulation study, Sci. Rep., 13, 461, 10.1038/s41598-023-27527-1
Parastarfeizabadi, 2017, Advances in closed-loop deep brain stimulation devices, J. NeuroEng. Rehabil., 14, 79, 10.1186/s12984-017-0295-1
Angermueller, 2016, Deep learning for computational biology, Mol. Syst. Biol., 12, 878, 10.15252/msb.20156651
Rahimi, 2021, Toward smart carbon capture with machine learning, Cell Rep. Phys. Sci., 2, 100396, 10.1016/j.xcrp.2021.100396
Shailaja, 2018, 910
Chen, 2019, How to develop machine learning models for healthcare, Nat. Mater., 18, 410, 10.1038/s41563-019-0345-0
Sargent, 2022
Marquez, 2019, 120
Jiang, 2021, Using machine learning technologies in pressure injury management: systematic review, JMIR Med. Inform., 9, e25704, 10.2196/25704
Schackart, 2021, Machine learning enhances the performance of bioreceptor-free biosensors, Sensors, 21, 5519, 10.3390/s21165519
Zlobina, 2022, The role of machine learning in advancing precision medicine with feedback control, Cell Rep. Phys. Sci., 3, 101149, 10.1016/j.xcrp.2022.101149
Girdhar, 2022, Classification of White blood cell using Convolution Neural Network, Biomed. Signal Process Control, 71, 103156, 10.1016/j.bspc.2021.103156
Nassif, 2022, Breast cancer detection using artificial intelligence techniques: A systematic literature review, Artif. Intell. Med., 127, 102276, 10.1016/j.artmed.2022.102276
Carrión, 2022, Automatic wound detection and size estimation using deep learning algorithms, PLoS Comput. Biol., 18, e1009852, 10.1371/journal.pcbi.1009852
Novikov, 2018, Fully convolutional architectures for multiclass segmentation in chest radiographs, IEEE Trans. Med. Imaging, 37, 1865, 10.1109/TMI.2018.2806086
Lugagne, 2020, DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning, PLoS Comput. Biol., 16, e1007673, 10.1371/journal.pcbi.1007673
Van Valen, 2016, Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments, PLoS Comput. Biol., 12, e1005177, 10.1371/journal.pcbi.1005177
Joorabloo, 2022, Using artificial neural network for design and development of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound healing, J. Ind. Eng. Chem., 108, 88, 10.1016/j.jiec.2021.12.027
Camacho, 2018, Next-generation machine learning for biological networks, Cell, 173, 1581, 10.1016/j.cell.2018.05.015
Jafari, 2021, Feedback control of bioelectronic devices using machine learning, IEEE Control Syst. Lett., 5, 1133, 10.1109/LCSYS.2020.3015597
Greener, 2022, A guide to machine learning for biologists, Nat. Rev. Mol. Cell Biol., 23, 40, 10.1038/s41580-021-00407-0
Chicco, 2017, Ten quick tips for machine learning in computational biology, BioData Min., 10, 35, 10.1186/s13040-017-0155-3
Lee, 2022, Ten quick tips for deep learning in biology, PLoS Comput. Biol., 18, e1009803, 10.1371/journal.pcbi.1009803
Volk, 2020, Biosystems design by machine learning, ACS Synth. Biol., 9, 1514, 10.1021/acssynbio.0c00129
Haykin, 2009
Goodfellow, 2016
Jafari, 2019, 163
Famm, 2013, A jump-start for electroceuticals, Nature, 496, 159, 10.1038/496159a
Birmingham, 2014, Bioelectronic medicines: a research roadmap, Nat. Rev. Drug Discov., 13, 399, 10.1038/nrd4351
Güemes Gonzalez, 2020, Closed-loop bioelectronic medicine for diabetes management, Bioelectron. Med., 6, 11, 10.1186/s42234-020-00046-4
Mickle, 2019, A wireless closed-loop system for optogenetic peripheral neuromodulation, Nature, 565, 361, 10.1038/s41586-018-0823-6
ávan Doremaele, 2019, Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics, J. Mater. Chem. C Mater., 7, 12754, 10.1039/C9TC03247A
Kim, S., Baek, S., Sluyter, R., Konstantinov, K., Kim, J.H., Kim, S., and Kim, Y.H. Wearable and implantable bioelectronics as eco-friendly and patient-friendly integrated nanoarchitectonics for next-generation smart healthcare technology. EcoMat, e12356.
Shirzaei Sani, 2023, A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds, Sci. Adv., 9, eadf7388, 10.1126/sciadv.adf7388
Yao, 2020, Flexible bioelectronics for physiological signals sensing and disease treatment, J. Materiomics, 6, 397, 10.1016/j.jmat.2019.12.005
Zhou, 2022, Smart bioelectronics and biomedical devices, Biodes. Manuf., 5, 1, 10.1007/s42242-021-00179-8
Quiroz, 2019, The evolution of control algorithms in artificial pancreas: A historical perspective, Annu. Rev. Control, 48, 222, 10.1016/j.arcontrol.2019.07.004
Ganzer, 2019, Opportunities and challenges for developing closed-loop bioelectronic medicines, Neural Regen. Res., 14, 46, 10.4103/1673-5374.243697
Kovatchev, 2019, Diabetes technology: monitoring, analytics, and optimal control, Cold Spring Harb. Perspect. Med., 9, a034389, 10.1101/cshperspect.a034389
Elowitz, 2002, Stochastic gene expression in a single cell, Science, 297, 1183, 10.1126/science.1070919
Kwok, 2010, Five Hard Truths for Synthetic Biology, Nature, 463, 288, 10.1038/463288a
Ang, 2005, PID control system analysis, design, and technology, IEEE Trans. Control Syst. Technol., 13, 559, 10.1109/TCST.2005.847331
Li, 2006, PID control system analysis and design, IEEE Control Systems Magazine, 26, 32, 10.1109/MCS.2006.1580152
O'Dwyer, 2009
Rocchitta, 2016, Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids, Sensors, 16, 780, 10.3390/s16060780
Liu, 2019, Low fouling strategies for electrochemical biosensors targeting disease biomarkers, Anal. Methods, 11, 702, 10.1039/C8AY02674B
Polikov, 2005, Response of brain tissue to chronically implanted neural electrodes, J. Neurosci. Methods, 148, 1, 10.1016/j.jneumeth.2005.08.015
Smolen, 2000, Mathematical modeling of gene networks, Neuron, 26, 567, 10.1016/S0896-6273(00)81194-0
Zheng, 2021, Exploiting machine learning for bestowing intelligence to microfluidics, Biosens. Bioelectron., 194, 113666, 10.1016/j.bios.2021.113666
Kan, 2017, Machine learning applications in cell image analysis, Immunol. Cell Biol., 95, 525, 10.1038/icb.2017.16
Goecks, 2020, How Machine Learning Will Transform Biomedicine, Cell, 181, 92, 10.1016/j.cell.2020.03.022
Maltarollo, 2013, Applications of artificial neural networks in chemical problems, Artif. Neural Networks-Architect. Appl., 203
Park, 2015, Deep learning for regulatory genomics, Nat. Biotechnol., 33, 825, 10.1038/nbt.3313
Narendra, 1990, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Netw., 1, 4, 10.1109/72.80202
Lavretsky, 2013, Robust adaptive control, 317
Hagan, 1999, 1642
Spooner, 2004
Khargonekar, 2018, Advancing systems and control research in the era of ML and AI, Annu. Rev. Control, 45, 1, 10.1016/j.arcontrol.2018.04.001
Hosseini Jafari, 2021, A feedback control architecture for bioelectronic devices with applications to wound healing, J. R. Soc. Interface, 18, 20210497, 10.1098/rsif.2021.0497
Castiglione, 2014, Modeling biology spanning different scales: an open challenge, BioMed Res. Int., 2014, 902545, 10.1155/2014/902545
Lehninger, 2008
Bean, 2007, The action potential in mammalian central neurons, Nat. Rev. Neurosci., 8, 451, 10.1038/nrn2148
Pérez-Ortín, 2007, Genomics and gene transcription kinetics in yeast, Trends Genet., 23, 250, 10.1016/j.tig.2007.03.006
Costa, 2011, Continuous live imaging of adult neural stem cell division and lineage progression in vitro, Development, 138, 1057, 10.1242/dev.061663
Seiler, 2014, Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation, J. Tissue Eng. Regen. Med., 8, 737, 10.1002/term.1575
Schofield, 2020, Bioelectrical understanding and engineering of cell biology, J. R. Soc. Interface, 17, 20200013, 10.1098/rsif.2020.0013
Anisuzzaman, 2022, Image-based artificial intelligence in wound assessment: A systematic review, Adv. Wound Care, 11, 687, 10.1089/wound.2021.0091
Mostafalu, 2018, Smart bandage for monitoring and treatment of chronic wounds, Small, 14, 1703509, 10.1002/smll.201703509
Veredas, 2015, Wound image evaluation with machine learning, Neurocomputing, 164, 112, 10.1016/j.neucom.2014.12.091
Carrión, 2022, 446
Lamnabhi-Lagarrigue, 2017, Systems & Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges, Annu. Rev. Control, 43, 1, 10.1016/j.arcontrol.2017.04.001
2020, Building a bioelectronic medicine movement 2019: insights from leaders in industry, academia, and research, Bioelectron. Med., 6, 1, 10.1186/s42234-020-0037-8