Merging empirical and mechanistic approaches to modeling aquatic visual foraging using a generalizable visual reaction distance model

Ecological Modelling - Tập 457 - Trang 109688 - 2021
Sean K. Rohan1, David A. Beauchamp2, Timothy E. Essington3, Adam G. Hansen4
1National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, United States
2U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA, 98115, United States
3University of Washington, School of Fishery and Aquatic Sciences, Box 355020, Seattle, WA 98195, United States
4Colorado Parks and Wildlife, Aquatic Research Section, 317 W. Prospect Rd., Fort Collins, CO 80526, United States

Tài liệu tham khảo

Aksnes, 1993, A theoretical model of aquatic visual feeding, Ecol. Modell., 67, 233, 10.1016/0304-3800(93)90007-F Aksnes, 1997, A revised model of visual range in fish, Sarsia, 82, 137, 10.1080/00364827.1997.10413647 Anthony, 1981, Visual contrast thresholds in the cod Gadus morhua L, J. Fish Biol., 19, 87, 10.1111/j.1095-8649.1981.tb05814.x Asaeda, 2002, Characteristics of reaction field and the reactive distance of a planktivore, Pseudorasbora parva (Cyprinidae), in various environmental conditions, Hydrobiologia, 489, 29, 10.1023/A:1023298823106 Blaxter, 1966, The effect of light intensity on the feeding ecology of herring, 393 Bod'ová, 2018, Probabilistic models of individual and collective animal behavior, PLoS ONE, 13 Boehlert, 1985, Turbidity enhances feeding abilities of larval Pacific herring, Clupea harengus pallasi, Hydrobiologia, 123, 161, 10.1007/BF00018978 Bouchet, 2019, Better model transfers require knowledge of mechanisms, Trends Ecol. Evol., 34, 489, 10.1016/j.tree.2019.04.006 Breck, 1983, Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish, Can. J. Fish. Aquat. Sci., 40, 162, 10.1139/f83-026 Britt, 2001, Visual pigments in the early life stages of Pacific northwest marine fishes, J. Exp. Biol., 204, 2581, 10.1242/jeb.204.14.2581 Davies-Colley, 2001, Turbidity, suspended sediment, and water clarity: a review, J. Am. Water Resour. Assoc., 37, 1085, 10.1111/j.1752-1688.2001.tb03624.x DeRobertis, 2002, Size-dependent visual predation risk and the timing of vertical migration: an optimization model, Limnol. Oceanogr., 47, 925, 10.4319/lo.2002.47.4.0925 Dowling, 2012 Duntley, 1952 Eiane, 1999, Fish or jellies — a question of visibility?, Limnol. Oceanogr., 44, 1352, 10.4319/lo.1999.44.5.1352 Fiksen, 2002, The influence of turbidity on growth and survival of fish larvae: a numerical analysis, Hydrobiologia, 484, 49, 10.1023/A:1021396719733 Giske, 1994, Visual predators, environmental variables and zooplankton mortality risk, Vie Milieu, 44, 1 Hairston, Jr., 1982, Fish vision and the detection of planktonic prey, Science, 218, 1240, 10.1126/science.7146908 Hansen, 2014, Effects of prey abundance, distribution, visual contrast and morphology on selection by a pelagic piscivore, Freshw. Biol., 59, 2328, 10.1111/fwb.12436 Hansen, 2015, Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems, J. Anim. Ecol., 84, 532, 10.1111/1365-2656.12295 Hansen, 2013, Visual prey detection responses of piscivorous trout and salmon: effects of light, turbidity, and prey size, Trans. Am. Fish. Soc., 142, 854, 10.1080/00028487.2013.785978 Hilborn, 1997 Holbrook, 2013, Foraging mechanisms of age-0 lake trout (Salvelinus namaycush), J. Great Lakes Res., 39, 128, 10.1016/j.jglr.2012.12.008 Horodysky, 2010, Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay, J. Exp. Biol., 213, 1751, 10.1242/jeb.038117 Keyler, 2019, Effect of light intensity and substrate type on siscowet lake trout (Salvelinus namaycush siscowet) predation on deepwater sculpin (Myoxocephalus thompsonii), Hydrobiologia, 840, 77, 10.1007/s10750-019-3944-5 Kirk, 2011 Kitano, 2008, Reverse evolution of armour plates in the threespine stickleback, Curr. Biol., 18, 744, 10.1016/j.cub.2008.04.027 Langbehn, 2017, Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans, Glob. Chang. Biol., 23, 5318, 10.1111/gcb.13797 Lee, 2015, Secchi disk depth: a new theory and mechanistic model for underwater visibility, Remote Sens. Environ., 169, 139, 10.1016/j.rse.2015.08.002 Lovvorn, 2001, Modeling underwater visual and filter feeding by planktivorous shearwaters in unusual sea conditions, Ecology, 82, 2342, 10.1890/0012-9658(2001)082[2342:MUVAFF]2.0.CO;2 Lythgoe, 1972, The adaptation of visual pigments to the photic environment, 566, 10.1007/978-3-642-65066-6_14 Maes, 2005, A spatially explicit, individual-based model to assess the role of estuarine nurseries in the early life history of North Sea herring, Clupea harengus, Fish. Oceanogr., 14, 17, 10.1111/j.1365-2419.2004.00300.x Mazur, 2003, A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities, Environ. Biol. Fishes, 67, 397, 10.1023/A:1025807711512 Mazur, 2006, Linking piscivory to spatial-temporal distributions of pelagic prey fishes with a visual foraging model, J. Fish Biol., 69, 151, 10.1111/j.1095-8649.2006.01075.x Meager, 2010, Effects of light intensity on visual prey detection by juvenile Atlantic cod (Gadus morhua L.), Mar. Freshw. Behav. Physiol., 43, 99, 10.1080/10236241003798910 Naka, 1966, S-potentials from colour units in the retina of fish (Cyprinidae), J. Physiol., 185, 536, 10.1113/jphysiol.1966.sp008001 Nilsson, 2014, Computational visual ecology in the pelagic realm, Philos. Trans. R. Soc. B Biol. Sci., 369 Richmond, 2004, Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch, J. Fish Biol., 65, 195, 10.1111/j.0022-1112.2004.00444.x Rosland, 1994, A dynamic optimization model of the diel vertical-distribution of a pelagic planktivorous fish, Prog. Oceanogr., 34, 1, 10.1016/0079-6611(94)90025-6 Ruxton, 2016, The effect of aggregation on visibility in open water, Proc. R. Soc. B Biol. Sci., 283 Ryer, 2002, A comparison of the functional ecology of visual vs. nonvisual foraging in two planktivorous marine fishes, Can. J. Fish. Aquat. Sci., 59, 1305, 10.1139/f02-097 Schmidt, 1982, Planktivorous feeding ecology of Arctic grayling (Thymallus arcticus), Can. J. Fish. Aquat. Sci., 39, 475, 10.1139/f82-065 Schwalbe, 2015, The effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and Tramitichromis sp, J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol., 201, 341, 10.1007/s00359-015-0982-y Semmelhack, 2014, A dedicated visual pathway for prey detection in larval zebrafish, Elife, 3, 1, 10.7554/eLife.04878 Thetmeyer, 1995, To see and not be seen: the visibility of predator and prey with respect to feeding behaviour, Mar. Ecol. Prog. Ser., 126, 1, 10.3354/meps126001 Utne, 1997, The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens, J. Fish Biol., 50, 926 Utne-Palm, 1999, The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey, J. Fish Biol., 54, 1244, 10.1111/j.1095-8649.1999.tb02052.x Utne-Palm, 2002, Visual feeding of fish in a turbid environment: physical and behavioural aspects, Mar. Freshw. Behav. Physiol., 35, 111, 10.1080/10236240290025644 Varpe, 2010, Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging, Ecology, 91, 311, 10.1890/08-1817.1 Vinyard, 1976, Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus), J. Fish. Res. Board Canada, 33, 2845, 10.1139/f76-342 Vogel, 1999, Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey, Can. J. Fish. Aquat. Sci., 56, 1293, 10.1139/f99-071 Warrant, 1998, Absorption of white light in photoreceptors, Vision Res., 38, 195, 10.1016/S0042-6989(97)00151-X Wright, 1984, The development and field test of a tactical model of the planktivorous feeding of white crappie (Pomoxis annularis), Ecol. Monogr., 54, 65, 10.2307/1942456 Yates, 2018, Outstanding challenges in the transferability of ecological models, Trends Ecol. Evol., 33, 790, 10.1016/j.tree.2018.08.001