Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle

Global Biogeochemical Cycles - Tập 27 Số 1 - Trang 222-238 - 2013
Jason D. Demers1, Joel D. Blum1, Donald R. Zak2
1Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
2School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, USA

Tóm tắt

Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg(g)) in the atmosphere and in evasion from soil, in 10‐year‐old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO2 and O3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ202Hg values of −0.74 to 0.06‰ and ∆199Hg values of 0.16 to 0.82‰. Atmospheric THg(g) had δ202Hg values of 0.48 to 0.93‰ and ∆199Hg values of −0.21 to −0.15‰. Uptake of THg(g) by foliage resulted in a large (−2.89‰) shift in δ202Hg values; foliage displayed δ202Hg values of −2.53 to −1.89‰ and ∆199Hg values of −0.37 to −0.23‰. Forest floor samples had δ202Hg values of −1.88 to −1.22‰ and ∆199Hg values of −0.22 to −0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg(g); however, there were systematic differences in δ202Hg values and MIF of even isotopes (∆200Hg and ∆204Hg). Mercury evasion from the forest floor may have arisen from air‐surface exchange of atmospheric THg(g), but was not the emission of legacy Hg from soils, nor re‐emission of wet‐deposition. This implies that there was net atmospheric THg(g) deposition to the forest soils. Furthermore, MDF of Hg isotopes during foliar uptake and air‐surface exchange of atmospheric THg(g) resulted in the release of Hg with very positive δ202Hg values to the atmosphere, which is key information for modeling the isotopic balance of the global mercury cycle, and may indicate a shorter residence time than previously recognized for the atmospheric mercury pool.

Từ khóa


Tài liệu tham khảo

10.1021/es00062a022

Berdinskii V. L., 2004, The magnetic isotope effect and the separation of isotopes in radical reactions: A theory, Russ. J. Phys. Chem., 78, 261

10.1126/science.1148050

10.2113/gselements.5.6.353

10.1021/ja954076k

10.1063/1.1746492

10.1021/es801444b

10.1007/s00216-007-1236-9

Blum J. D., 2012, Alberta Oil Sands: Energy, Industry and the Environment

10.1021/jp011261d

10.1070/RC2009v078n04ABEH003904

Buchanan B. B., 2000, Biochemistry & molecular biology of plants, Am. Soc. Plant Biologists, 507

10.1021/es900578v

10.1021/es960910

10.1016/S1352-2310(97)00133-7

10.1007/s00216-006-1111-0

10.1016/j.gca.2012.05.005

10.1016/j.envpol.2008.12.014

10.1016/j.envpol.2008.08.020

10.1016/j.atmosenv.2010.03.024

10.1890/06-1697.1

10.1029/2008WR007021

Dickson R. E. K. F.Lewin J. G.Isebrands M. D.Coleman W. E.Heilman D. E.Riemenschneider J.Sober G. E.Host D. R.Zak K. S.Hendrey K. S.Pregitzer andD. F.Karnosky(2000) Forest atmosphere carbon transfer storage‐II (FACTS II) ‐ the aspen free air CO2and O3enrichment (FACE) project: an overview. General technical report NC‐214 US Department of agriculture forest service north central experiment station St Paul MN.

10.1029/2009WR008351

10.1016/j.scitotenv.2005.11.025

10.1016/S1352-2310(01)00184-4

10.1021/es0505651

10.1016/j.scitotenv.2005.08.019

10.1021/es100674a

10.1021/es1026823

10.1016/j.gca.2009.01.024

10.1029/2004JD005643

Fitzgerald W. F. andR. P.Mason(1997) Biogeochemical cycling of mercury in the marine environment. Pages 53‐111inmetal ions in biological systems Vol 34.

10.1007/s11056-006-9004-9

10.1016/j.gca.2010.11.012

10.1021/es103053y

10.1029/2007GC001827

10.1016/j.chemgeo.2012.01.008

10.1021/es100383w

10.1021/es900357s

10.1021/es0604616

10.2134/jeq2003.3930

10.1023/A:1006322705566

10.1016/S1352-2310(02)00329-1

Gustin M. S., 2003, Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol., 43, 339, 10.1007/s00254-002-0630-z

10.1016/j.apgeochem.2006.08.007

10.1021/es0487933

10.1029/1999JD900351

10.1016/j.apgeochem.2007.12.010

10.1021/es049800q

10.1021/es034623z

10.1021/es025572t

10.1016/j.soilbio.2011.03.030

10.1007/BF00342299

10.1016/j.apgeochem.2007.12.013

10.1139/x26-003

Karnosky D. F. Z.Gagnon R. E.Dickson P.Pechter M.Coleman O.Kull A.Sober andJ. G.Isebrands(1996b) Effects of ozone and CO2 on the growth and physiology of aspen. Pages 21‐21in1995 meeting of the northern global change program Proceedings.

Karnosky D. F., 2003, Tropospheric O‐3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project, Funct. Ecol., 17, 289, 10.1046/j.1365-2435.2003.00733.x

10.1007/BF01189664

10.1111/j.1469-8137.2005.01557.x

10.2134/jeq1999.00472425002800030006x

10.1023/A:1005020326683

10.2136/sssaj2001.653897x

10.1016/j.gca.2008.11.038

10.1021/es801591k

10.1021/es062019t

10.1046/j.1469-8137.1998.00264.x

10.1016/j.apgeochem.2007.12.007

10.1016/j.apgeochem.2007.12.006

10.1021/es9700055

10.1016/S0016-7037(01)00630-5

Lefticariu L., 2010, Mercury isotopes in Illinois basin coal: organic and inorganic constituents, Geochim. Cosmochim. Acta, 74, A577

10.1021/es102875n

Lindberg S. E.(1996) Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes. Pages 359‐380inglobal and regional mercury dycles: sources fluxes and mass balances.

10.1021/es970546u

10.1029/1999JD900202

10.1016/S1352-2310(01)00502-7

10.1021/es062323m

10.1029/2001GB001440

10.1016/j.apgeochem.2007.12.017

10.1007/BF00342281

10.1007/BF00342282

10.1021/es0609194

10.1016/j.chemosphere.2006.03.008

10.1029/2004JD005567

10.1016/0045-6535(88)90189-0

10.1021/es104377y

10.1016/j.foreco.2006.05.071

10.1023/B:WATE.0000009907.49577.a8

10.1007/s00442-008-1135-6

10.1038/358139a0

10.1038/ngeo1049

Rasmussen P. E. G. C.Edwards R. J.Kemp C. R.Fitzgerald‐Hubble andW. H.Schroeder(1998) Towards an improved natural sources inventory for mercury. Pages 73–83inmetals and the environment.

Rea A. W. G. J.Keeler andT.Scherbatskoy(1995) The Deposition of Mercury in throughfall and litterfall in a northern mixed hardwood forest. Abstracts of Papers of the American Chemical Society 210:75–GEOC.

10.1016/1352-2310(96)00087-8

10.1021/es991305k

10.1016/S1352-2310(01)00133-9

10.1023/A:1012919731598

10.1016/j.atmosenv.2010.11.025

10.1016/j.gca.2007.02.004

10.1016/S1352-2310(97)00293-8

10.1029/2004JD005699

10.1007/BF00342308

10.1038/380694a0

10.1021/es902361j

10.1029/2002EO000031

10.1038/ngeo758

10.1021/es202793c

10.1016/j.epsl.2008.12.032

10.1007/s11434-011-4396-0

10.1016/j.epsl.2008.02.029

10.1130/G21863.1

10.1016/j.gca.2011.05.027

Sonke J. E. O.Pokrovsky andV.Schevchenko(2011) Mercury stable isotopic compositions of lichens and mosses from the Russian (sub‐)arctic. The 10th International conference on mercury as a global pollutant. Halifax Nova Scotia Canada.

10.1021/es001924p

10.1021/es801583a

10.1111/j.1461-0248.2009.01380.x

10.1039/jr9470000562

USEPA(1998) Method 1631: Measurement of mercury in water; revision E. U.S. Environmental protection agency office of water office of science and technology engineering and analysis division (4303) Washington D.C. USA.

10.1029/1999JD900314

10.1021/es100205t

10.1016/j.apgeochem.2007.02.006

10.1021/es062783f

10.1016/S0003-2670(96)00509-0

10.1111/j.1365-2486.2007.01436.x

10.1016/j.epsl.2008.10.023

10.1029/1999JD900194

Zhang H. S. E.Lindberg andM. S.Gustin(2001) Nature of diel trend of mercury emission from soil: Current understanding and hypotheses. Abstracts of papers of the American chemical society 222:67–ENVR.

10.1016/j.gca.2009.08.016

10.1021/jp9111348

10.1021/jp910353y

10.1039/b705677j