Mercury isotope compositions across North American forests

Global Biogeochemical Cycles - Tập 30 Số 10 - Trang 1475-1492 - 2016
Wang Zheng1,2, Daniel Obrist3, Dominique Weis4, Bridget A. Bergquist1
1Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
2School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
3Divison of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, USA
4Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada

Tóm tắt

AbstractForest biomass and soils represent some of the largest reservoirs of actively cycling mercury (Hg) on Earth, but many uncertainties exist regarding the source and fate of Hg in forest ecosystems. We systematically characterized stable isotope compositions of Hg in foliage, litter, and mineral soil horizons across 10 forest sites in the contiguous United States. The mass‐independent isotope signatures in all forest depth profiles are more consistent with those of atmospheric Hg(0) than those of atmospheric Hg(II), indicating that atmospheric Hg(0) is the larger source of Hg to forest ecosystems. Within litter horizons, we observed significant enrichment in Hg concentration and heavier isotopes along the depth, which we hypothesize to result from additional deposition of atmospheric Hg(0) during litter decomposition. Furthermore, Hg isotope signatures in mineral soils closely resemble those of the overlying litter horizons suggesting incorporation of Hg from litter as a key source of soil Hg. The spatial distribution of Hg isotope compositions in mineral soils across all sites is modeled by isotopic mixing assuming atmospheric Hg(II), atmospheric Hg(0), and geogenic Hg as major sources. This model shows that northern sites with higher precipitation tend to have higher atmospheric Hg(0) deposition than other sites, whereas drier sites in the western U.S. tend to have higher atmospheric Hg(II) deposition than the rest. We attribute these differences primarily to the higher litterfall Hg input at northern wetter sites due to increased plant productivity by precipitation. These results allow for a better understanding of Hg cycling across the atmosphere‐forest‐soil interface.

Từ khóa


Tài liệu tham khảo

10.1021/acs.est.5b04013

10.1126/science.184.4139.895

10.2307/1468242

10.1126/science.1148050

10.2113/gselements.5.6.353

10.1021/ja954076k

10.1021/es801444b

10.1021/es505928w

10.1016/j.envpol.2015.02.036

10.1007/s10533-014-9961-6

10.1007/s00216-007-1236-9

10.1146/annurev-earth-050212-124107

Buchachenko A. L., 2001, Magnetic isotope effect: Nuclear spin control of chemical reactions, J. Phys. Chem. A, 105, 9995, 10.1021/jp011261d

10.1070/RC2009v078n04ABEH003904

Buchanan B. B., 2000, Biochemistry & molecular biology of plants

10.1007/s11434-015-0968-8

10.1016/j.chemgeo.2014.12.029

10.1021/es960910

10.1021/es5034553

10.1016/j.gca.2012.05.005

10.1016/j.chemgeo.2016.01.030

10.1890/06-1697.1

10.1002/gbc.20021

10.1002/jgrg.20066

10.1002/2015GB005146

10.1021/es4046549

Drevnick P. E., 2009, Mercury flux to sediments of Lake Tahoe, California–Nevada, Water Air Soil Pollut., 210, 399

10.1021/es305071v

10.1016/0098-8472(82)90054-5

10.1016/0098-8472(83)90009-6

10.1021/acs.est.5b06058

10.1016/S1352-2310(03)00008-6

10.1016/j.gca.2009.01.024

10.5194/acp-9-8049-2009

10.1007/BF01055621

10.1021/es60139a004

10.1007/s11270-011-0769-x

10.1038/ngeo1478

10.1002/jpln.200625211

10.5194/acp-10-2425-2010

10.1039/c3ja50356a

10.1007/s10653-004-1308-0

10.1016/j.chemgeo.2012.01.008

10.1021/es100383w

10.1021/es900357s

10.1029/2011GB004031

10.2134/jeq2003.3930

10.1023/A:1006322705566

10.1016/j.scitotenv.2008.04.001

10.1007/s10533-005-4566-8

10.1021/es049800q

10.1007/978-94-011-0153-0_41

10.1021/es3005915

10.1039/C4JA00438H

10.1007/BF00342299

10.1021/acs.est.5b00742

10.1002/etc.1896

10.1073/pnas.94.24.13023

10.1021/es062019t

10.1016/j.chemgeo.2012.08.017

10.1016/j.apgeochem.2007.12.006

10.1016/j.apgeochem.2007.12.007

10.1021/es401357z

10.1016/0016-7037(78)90046-7

10.1016/j.scitotenv.2006.10.041

10.1016/S1352-2310(98)00387-2

10.1021/es970546u

10.1029/1999JD900202

10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2

10.3402/tellusb.v37i3.15010

10.1111/j.1466-882X.2004.00072.x

10.1093/oxfordjournals.aob.a087560

10.1021/es9800277

10.1038/ngeo1353

10.1039/b926650j

10.1029/2001GB001440

10.1016/0016-7037(94)90046-9

10.1016/j.envres.2012.03.013

10.1007/BF00342281

10.1007/978-94-011-0153-0_40

10.1021/es2045579

10.5194/bg-6-765-2009

10.1021/es104384m

10.1002/jpln.201000415

10.1021/es4048297

10.1016/j.scitotenv.2015.1011.1104

10.1093/treephys/21.5.337

10.1016/j.geoderma.2014.04.040

10.5194/acp-10-5951-2010

10.5194/bg-8-2507-2011

10.1016/1352-2310(96)00087-8

10.1016/S1352-2310(01)00133-9

10.1023/A:1012919731598

10.1016/j.chemgeo.2012.10.007

10.1016/j.chemgeo.2015.02.025

10.1016/j.atmosenv.2010.11.025

10.1016/j.gca.2007.02.004

10.1007/s002540050005

10.1016/S1352-2310(97)00293-8

10.1007/BF00342308

10.1016/j.atmosenv.2008.02.069

10.1016/j.scitotenv.2012.09.038

10.1038/ngeo758

10.1021/es202793c

10.1016/j.epsl.2008.02.029

10.1016/j.chemgeo.2010.09.017

10.1021/es001924p

10.1021/es801583a

10.1021/acs.est.6b01668

10.1021/es501208a

Sun R., 2016, Historical (1850–2010) mercury stable isotope inventory from anthropogenic sources to the atmosphere, Elementa: Science of the Anthropocene, 4, 000,091

10.1029/2006JD007415

10.1007/s10533-013-9902-9

10.5194/acpd-12-29203-2012

10.1021/acs.est.1025b06351

10.1016/j.crte.2015.1002.1006

10.1021/es100205t

10.1021/es980433q

10.1021/es062783f

10.2134/jeq1996.00472425002500040027x

10.1021/acs.est.6b01782

10.1038/srep03322

10.1016/j.gca.2009.08.016

10.1021/jp910353y

10.1021/jp9111348

10.1021/es203402p

10.1021/es402697u