Menger fractal structure with negative refraction and sound tunnelling properties

Materials Research Express - Tập 6 Số 11 - Trang 116211 - 2019
Yu Liu1,2, Wenshuai Xu1,2, Meng Chen1,2, Dongliang Pei1,2, Tao Yang1,2, Heng Jiang1,2, Yuren Wang1,2
1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Tóm tắt

Abstract

We construct new quasi-three-dimensional fractal acoustic metamaterials based on adoption of the Menger structure, which offers extraordinary parameters such as double-negative properties and a near-zero density. The resulting metamaterials can thus achieve negative refraction, acoustic focusing and sound tunneling. Using the finite element method and the S-parameter retrieval method, the band structures and the effective parameters of these acoustic metamaterials are researched, respectively. The negative refraction property is numerically simulated using a Gaussian beam passing through a double negative prism. A plate lens with a refractive index of n = −1 is constructed to achieve acoustic focusing and the sound tunnelling ability is verified using the near-zero-density metamaterial. The results show that the Menger fractal structures have excellent acoustic properties and are promising for acoustic applications.

Từ khóa


Tài liệu tham khảo

Nemat-Nasser, 2019, Mech. Mater., 132, 1, 10.1016/j.mechmat.2018.12.011

Zhang, 2004, Appl. Phys. Lett., 85, 341, 10.1063/1.1772854

Feng, 2005, Phys. Rev. B, 72, 10.1103/PhysRevB.72.033108

Mokhtari, 2019, J. Mech. Phys. Solids., 126, 256, 10.1016/j.jmps.2019.02.016

Zhu, 2014, Nat. Commun., 5, 5510, 10.1038/ncomms6510

Notomi, 2000, Phys. Rev. B, 62, 10696, 10.1103/PhysRevB.62.10696

Liu, 2000, Science, 289, 1734, 10.1126/science.289.5485.1734

Hirsekorn, 2004, Appl. Phys. Lett., 84, 3364, 10.1063/1.1723688

Wang, 2004, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.154302

Hsu, 2007, Appl. Phys. Lett., 90, 10.1063/1.2739369

Sainidou, 2006, Phys. Rev. B, 73, 10.1103/PhysRevB.73.024302

Fang, 2006, Nat Mater, 5, 452, 10.1038/nmat1644

Li, 2004, Phys. Rev. E, 70, 10.1103/PhysRevE.70.055602

Ding, 2007, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.093904

Lee, 2010, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.054301

Chen, 2013, J. Appl. Phys., 113, 10.1063/1.4790312

Zeng, 2013, Solid. State. Commun., 173, 14, 10.1016/j.ssc.2013.08.017

Chen, 2016, J. Appl. Phys., 119, 10.1063/1.4951008

Fok, 2011, Phys. Rev. B, 83, 10.1103/PhysRevB.83.214304

Lai, 2011, Nat. Mater., 10, 620, 10.1038/nmat3043

Yang, 2013, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.134301

Xia, 2018, J. Vib. Acoust., 140, 10.1115/1.4037514

Liu, 2018, Int. J. Solids Struct., 132, 20, 10.1016/j.ijsolstr.2017.06.019

Man, 2018, J. Sound Vib., 423, 322, 10.1016/j.jsv.2018.02.060

Krushynska, 2017, New J. Phys., 19, 10.1088/1367-2630/aa83f3

Cheng, 2015, Nat Mater, 14, 1013, 10.1038/nmat4393

Krushynska, 2018, Acta Acust. United Ac., 104, 200, 10.3813/AAA.919161

Miniaci, 2018, Phys. Rev. Appl., 10, 10.1103/PhysRevApplied.10.024012

Liang, 2012, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.114301

Liang, 2013, Sci. Rep., 3, 1614, 10.1038/srep01614

Li, 2012, Appl. Phys. Lett., 101, 10.1063/1.4769984

Zigoneanu, 2011, Phys. Rev. B, 84, 10.1103/PhysRevB.84.024305

Fu, 2017, Appl. Phys. Lett., 111, 10.1063/1.5005553

Frenzel, 2013, Appl. Phys. Lett., 103, 10.1063/1.4817934

Zhang, 2016, Phys. Rev. Appl., 6, 10.1103/PhysRevApplied.6.064025

Man, 2019, J. Phys. D Appl. Phys., 10.1088/1361-6463/ab092a

Fokin, 2007, Phys. Rev. B, 76, 10.1103/PhysRevB.76.144302