Memory consolidation — Mechanisms and opportunities for enhancement

Walter de Gruyter GmbH - Tập 4 - Trang 448-457 - 2013
Netasha Shaikh1, Elizabeth Coulthard1
1Institute of Clinical Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, UK

Tóm tắt

Memory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.

Tài liệu tham khảo

Launer L.J., Andersen K., Dewey M.E., Letenneur L., Ott A., Amaducci L.A., et al., Rates and risk factors for dementia and Alzheimer’s disease — Results from EURODEM pooled analyses, Neurology, 1999, 52, 78–84 Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278 Schuff N., Woerner N., Boreta L., Kornfield T., Shaw L.M., Trojanowski J.Q., et al., MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers, Brain, 2009, 132, 1067–1077 McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269 Vincent A., Buckley C., Schott J.M., Baker I., Dewar B.K., Detert N., et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, 2004, 127, 701–712 Spencer R.M.C., Gouw A.M., Ivry R.B., Age-related decline of sleepdependent consolidation, Learn. Mem., 2007, 14, 480–484 Buzsáki G., Two-stage model of memory trace formation — a role for “noisy” brain states, Neuroscience, 1989, 31, 551–570 Rasch B., Born J., Maintaining memories by reactivation, Curr. Opin. Neurobiol., 2007, 17, 698–703 Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training, Nat. Neurosci., 2000, 3, 1237–1238 Fischer S., Hallschmid M., Elsner A.L., Born J., Sleep forms memory for finger skills, Proc. Natl. Acad. Sci. USA, 2002, 99, 11987–11991 Rasch B., Buechel C., Gais S., Born J., Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 2007, 315, 1426–1429 Buzsáki G., Hippocampal sharp waves — their origin and significance, Brain Res., 1986, 398, 242–252 Behrens C.J., van den Boom L.P., de Hoz L., Friedman A., Heinemann U., Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks, Nat. Neurosci., 2005, 8, 1560–1567 Sirota A., Csicsvari J., Buhl D., Buzsáki G., Communication between neocortex and hippocampus during sleep in rodents, Proc. Natl. Acad. Sci. USA, 2003, 100, 2065–2069 Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci., 2007, 10, 100–107 Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep, Nat. Neurosci., 2009, 12, 919–926 Gauthier S., Scheltens P., Can we do better in developing new drugs for Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 489–491 Bartus R.T., Dean R.L., Beer B., Lippa A.S., The cholinergic hypothesis of geriatric memory dysfunction, Science, 1982, 217, 408–417 Davies P., Maloney A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 1976, 2, 1403–1403 Drachman D.A., Leavitt J., Human memory and cholinergic system — relationship to aging, Arch. Neurol., 1974, 30, 113–121 Ellis B.W., Johns M.W., Lancaster R., Raptopoulos P., Angelopoulos N., Priest R.G., The St. Mary’s Hospital sleep questionnaire: a study of reliability, Sleep, 1981, 4, 93–97 Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al., Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease, Arch. Neurol., 1997, 54, 465–473 Levey A.I., Immunological localization of m1-m5 muscarinic acetylcholine-receptors in peripheral-tissues and brain, Life Sci., 1993, 52, 441–448 Roldán G., Bolaños-Badillo E., González-Sánchez H., Quirarte G.L., Prado-Alcalá R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats, Neurosci. Lett., 1997, 230, 93–96 Ferreira A.R., Fürstenau L., Blanco C., Kornisiuk E., Sánchez G., Daroit D., et al., Role of hippocampal M-1 and M-4 muscarinic receptor subtypes in memory consolidation in the rat, Pharmacol. Biochem. Behav., 2003, 74, 411–415 Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., et al., Selective cognitive dysfunction in acetylcholine M-1 muscarinic receptor mutant mice, Nat. Neurosci., 2003, 6, 51–58 Nissen C., Power A.E., Noftinger E.A., Feige B., Voderholzer U., Kloepfer C., et al., M-1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation, J. Cogn. Neurosci., 2006, 18, 1799–1807 Foster N.L., Aldrich M.S., Bluemlein L., White R.F., Berent S., Failure of cholinergic agonist RS-86 to improve cognition and movement in PSP despite effects on sleep, Neurology, 1989, 39, 257–261 Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al., A randomized trial of deep-brain stimulation for Parkinson’s disease, N. Engl. J. Med., 2006, 355, 896–908 Huys D., Möller M., Kim E.H., Hardenacke K., Huff W., Klosterkötter J., et al., Deep brain stimulation for psychiatric disorders: historical basis, Nervenarzt, 2012, 83, 1156–1168 Laxton A.W., Tang-Wai D.F., McAndrews M.P., Zumsteg D., Wennberg R., Keren R., et al., A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s Disease, Ann. Neurol., 2010, 68, 521–534 Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., et al., Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 2012, 366, 502–510 Bethus I., Tse D., Morris R.G.M., Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptordependent paired associates, J. Neurosci., 2010, 30, 1610–1618 Chowdhury R., Guitart-Masip M., Bunzeck N., Dolan R.J., Düzel E., Dopamine modulates episodic memory persistence in old age, J. Neurosci., 2012, 32, 14193–14204 Coulthard E.J., Bogacz R., Javed S., Mooney L.K., Murphy G., Keeley S., et al., Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making, Brain, 2012, 135, 3721–3734 Lisman J., Grace A.A., Düzel E., A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends Neurosci., 2011, 34, 536–547 Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., et al., Involvement of hippocampal cAMP/cAMPdependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. USA, 1997, 94, 7041–7046 Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W.A., van Dyck C.H., et al., Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo, Biol. Psychiatry, 2010, 68, 854–860 Volkow N.D., Fowler J.S., Wang G., Ding Y., Gatley S.J., Mechanism of action of methylphenidate: insights from PET imaging studies, J. Atten. Disord., 2002, 6,Suppl. 1, S31–43 Andersen M.L., Kessler E., Murnane K.S., McClung J.C., Tufik S., Howell L.L., Dopamine transporter-related effects of modafinil in rhesus monkeys, Psychopharmacology, 2010, 210, 439–448 Outram S.M., The use of methylphenidate among students: the future of enhancement?, J. Med. Ethics, 2010, 36, 198–202 Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J., Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, 2003, 165, 260–269 Linssen A.M.W., Vuurman E.F.P.M., Sambeth A., Riedel W.J., Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers, Psychopharmacology, 2012, 221, 611–619 Berridge C.W., Devilbiss D.M., Psychostimulants as cognitive Enhancers: the prefrontal cortex, catecholamines, and attentiondeficit/ hyperactivity disorder, Biol. Psychiatry, 2011, 69, E101–111 Pierard C., Liscia P., Chauveau F., Coutan M., Corio M., Krazem A., et al., Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil, Pharmacol. Biochem. Behav., 2011, 97, 399–405 Müller U., Rowe J.B., Rittman T., Lewis C., Robbins T.W., Sahakian B.J., Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers, Neuropharmacology, 2013, 64, 490–495 Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, 20, 8620–8628 Meneses A., Ponce-Lopez T., Tellez R., Gonzalez R., Castillo C., Gasbarri A., Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats, Behav. Brain Res., 2011, 216, 472–476 Wiig K.A., Whitlock J.R., Epstein M.H., Carpenter R.L., Bear M.F., The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation, Neurobiol. Learn. Mem., 2009, 92, 106–113 Ballard M.E., Gallo D.A., de Wit H., THC impairs, and amphetamine facilitates, memory encoding preferentially for emotionally salient stimuli, Soc. Neurosci. Abstr., 2011, 41, 752.06 Advokat C., Scheithauer M., Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers, Front. Neurosci., 2013, 7, 82 Sumowski J.F., Chiaravalloti N.D., Erlanger D.M., Kaushik T., Benedict R., DeLuca J., L-amphetamine improves memory capacity among memory-impaired patients with multiple sclerosis, Neurology, 2011, 76,Suppl. 4, A482 Jones S., Kornblum J.L., Kauer J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 2000, 20, 5575–5580 Del Arco A., González-Mora J.L., Armas V.R., Mora F., Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms, Neuropharmacology, 1999, 38, 943–954 Drevets W.C., Gautier C., Price J.C., Kupfer D.J., Kinahan P.E., Grace A.A., et al., Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria, Biol. Psychiatry, 2001, 49, 81–96 Imperato A., Obinu M.C., Gessa G.L., Effects of cocaine and amphetamine on acetylcholine-release in the hippocampus and caudate nucleus, Eur. J. Pharmacol., 1993, 238, 377–381 Day J.C., Fibiger H.C., Dopaminergic regulation of septohippocampal cholinergic neurons, J. Neurochem., 1994, 63, 2086–2092 Ponomarenko A.A., Lin J.S., Selbach O., Haas H.L., Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking, Neuroscience, 2003, 121, 759–769 Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus, Neuron, 2007, 53, 261–277 Rossato J.I., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Cammarota M., Dopamine controls persistence of long-term memory storage, Science, 2009, 325, 1017–1020 Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B., Infusion of brainderived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus, J. Neurosci., 2001, 21, 6706–6717 Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease, Nat. Med., 2009, 15, 331–337 Patel N.K., Gill S.S., GDNF delivery for Parkinson’s disease, Acta Neurochir. Suppl., 2007, 97, 135–154 Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J., Inducing sleep by remote control facilitates memory consolidation in Drosophila, Science, 2011, 332, 1571–1576 Mathias S., Zihl J., Steiger A., Lancel M., Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects, Neuropsychopharmacology, 2005, 30, 833–841 Faulhaber J., Steiger A., Lancel M., The GABA(A) agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans, Psychopharmacology, 1997, 130, 285–291 Boyle J., Wolford D., Gargano C., McCrea J., Cummings C., Cerchio K., et al., Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects, Hum. Psychopharmacol., 2009, 24, 61–71 Dijk D.J., James L.M., Peters S., Walsh J.K., Deacon S., Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep, J. Psychopharmacol., 2010, 24, 1613–1618 Massimini M., Ferrarelli F., Esser S.K., Riedner B.A., Huber R., Murphy M., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8496–8501 Marshall L., Helgadottir H., Moelle M., Born J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, 444, 610–613 Toni G., Riedner B.A., Hulse B.K., Ferrarelli F., Sarasso S., Enhancing sleep slow waves with natural stimuli, Medicamundi, 2010, 54, 73–79 Ngo H.-V.V., Martinetz T., Born J., Moelle M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, 78, 545–553 van Praag H., Christie B.R., Sejnowski T.J., Gage F.H., Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA, 1999, 96, 13427–13431 van Praag H., Neurogenesis and exercise: past and future directions, Neuromolecular Med., 2008, 10, 128–140 Berggren K.L., Kerr A.L., Iles B.W., Nye S.H., Swain R.A., Exerciseinduced angiogenesis in the CNS of Dahl Salt-Sensitive and SSBN.13 consomic rats, Soc. Neurosci. Abstr., 2008, 38, 219.10 Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., et al., A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children, Brain Res., 2010, 1358, 172–183 Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., et al., Exercise training increases size of hippocampus and improves memory, Proc. Natl. Acad. Sci. USA, 2011, 108, 3017–3022 Coles K., Tomporowski P.D., Effects of acute exercise on executive processing, short-term and long-term memory, J. Sports Sci., 2008, 26, 333–344 Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates, Proc. Nat. Acad. Sci. USA, 1999, 96, 5263–5267 Amrein I., Isler K., Lipp H.-P., Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage, Eur. J. Neurosci., 2011, 34, 978–987 Apostolova L.G., Green A.E., Babakchanian S., Hwang K.S., Chou Y.-Y., Toga A.W., et al., Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2012, 26, 17–27 Garcia-Mesa Y., Carlos Lopez-Ramos J., Gimenez-Llort L., Revilla S., Guerra R., Gruart A., et al., Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice, J. Alzheimers Dis., 2011, 24, 421–454 Rodriguez J.J., Noristani H.N., Olabarria M., Fletcher J., Somerville T.D.D., Yeh C.Y., et al., Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2011, 8, 707–717 Nagamatsu L.S., Chan A., Davis J.C., Beattie J.C., Beattie B.L., Graf P., et al., Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial, J. Aging Res., 2013, 861893 Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial, JAMA, 2008, 300, 1027–1037 Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G.M., Tufik S., Meeusen R., et al., Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms, Neuroscience, 2012, 202, 309–317 Chen D.Y., Stern S.A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., et al., A critical role for IGF-II in memory consolidation and enhancement, Nature, 2011, 469, 491–497 Dash M.B., Bellesi M., Tononi G., Cirelli C., Sleep/wake dependent changes in cortical glucose concentrations, J. Neurochem., 2013, 124, 79–89 Jones E.K., Suenram-Lea S.I., Wesnes K.A., Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults, Biol. Psychol., 2012, 89, 477–486 Messier C., Glucose improvement of memory: a review, Eur. J. Pharmacol., 2004, 490, 33–57 Smith M.A., Riby L.M., van Eekelen J.A.M., Foster J.K., Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect, Neurosci. Biobehav. Rev., 2011, 35, 770–783 Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels, Psychopharmacology, 2001, 157, 46–54 Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect, Psychopharmacology, 2002, 160, 387–397 Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516 Varady K.A., Hellerstein M.K., Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 2007, 86, 7–13 Partridge L., Piper M.D.W., Mair W., Dietary restriction in Drosophila, Mech. Ageing Dev., 2005, 126, 938–950 Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature, 2012, 489, 318–321 Weindruch R., Walford R.L., Fligiel S., Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy-intake, J. Nutr., 1986, 116, 641–654 Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 2009, 325, 201–204 Eckles-Smith K., Clayton D., Bickford P., Browning M.D., Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression, Mol. Brain Res., 2000, 78, 154–162 Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., et al., Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age, 2012, 34, 917–933 Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422 Wu P., Shen Q., Dong S., Xu Z., Tsien J.Z., Hu Y., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice, Neurobiol. Aging, 2008, 29, 1502–1511 Thaler S., Choragiewicz T.J., Rejdak R., Fiedorowicz M., Turski W.A., Tulidowicz-Bielak M., et al., Neuroprotection by acetoacetate and beta-hydroxybutyrate against NMDA-induced RGC damage in ratpossible involvement of kynurenic acid, Graefes Arch. Clin. Exp. Ophthal., 2010, 248, 1729–1735 Henderson S.T., Ketone bodies as a therapeutic for Alzheimer’s disease, Neurotherapeutics, 2008, 5, 470–480 Reger M.A., Henderson S.T., Hale C., Cholerton B., Baker L.D., Watson G.S., et al., Effects of beta-hydroxybutyrate on cognition in memoryimpaired adults, Neurobiol. Aging, 2004, 25, 311–314 Dhurandhar E.J., Allison D.B., van Groen T., Kadish I., Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model, PLoS One, 2013, 8, e60437 Cao D.H., Kevala K., Kim J., Moon H.S., Jun S.B., Lovinger D., et al., Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function, J. Neurochem., 2009, 111, 510–521 Bhatia H.S., Agrawal R., Sharma S., Huo Y.-X., Ying Z., Gomez-Pinilla F., Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood, PLoS One, 2011, 6, e28451 Vines A., Delattre A.M., Lima M.M.S., Rodrigues L.S., Suchecki D., Machado R.B., et al., The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism, Neuropharmacology, 2012, 62, 184–191 Arsenault D., Julien C., Tremblay C., Calon F., DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice, PLoS One, 2011, 6, e17397